满分5 > 初中数学试题 >

家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销...

家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量y(件)与销售单价x(元)之间存在如图所示的一次函数关系.
(1)求y关于x的函数关系式(不必写出x的取值范围);
(2)求试销期间该服装部销售该品牌服装获得利润W(元)与销售单价x(元)的函数关系式;销售单价定为多少元时,服装部可获得最大利润,最大利润是多少元?
(3)如果在试销期间该服装部想要获得500元的利润,那么销售单价应定为多少元?
(4)若在试销期间该服装部获得利润不低于500元,试确定销售单价x的范围.

manfen5.com 满分网
(1)列出二元一次方程组解出k与b的值可求出一次函数的表达式. (2)依题意求出W与x的函数表达式可推出当x=87时商场可获得最大利润. (3)由w=500推出x2-180x+7700=0解出x的值即可. (4)利用函数图象,分析得出x的取值范围即可. 【解析】 (1)根据题意得 , 解得k=-1,b=120. 所求一次函数的表达式为y=-x+120.(2分) (2)W=(x-60)•(-x+120) =-x2+180x-7200 =-(x-90)2+900,(4分) ∵抛物线的开口向下, ∴当x<90时,W随x的增大而增大, 而销售单价不低于成本单价,且获利不得高于45%, 即x-60≤60×45%, ∴60≤x≤87, ∴当x=87时,W=-(87-90)2+900=891. ∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(6分) (3)如果在试销期间该服装部想要获得500元的利润, ∴500=-x2+180x-7200, 解为 x1=70,x2=110(不合题意舍去). ∴销售单价应定为70元; (4)由W≥500,得500≤-x2+180x-7200, 而方程x2-180x+7700=0的解为 x1=70,x2=110.(7分) 即x1=70,x2=110时利润为500元,而函数y=-x2+180x-7200的开口向下, 所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间, 而60元/件≤x≤87元/件, 所以,销售单价x的范围是70元/件≤x≤87元/件.(10分)
复制答案
考点分析:
相关试题推荐
如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.
(1)求直线与抛物线的解析式;
(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;
(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的manfen5.com 满分网?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
在图①至图③中,△ABC为直角三角形,且∠ABC=90°,∠A=30°,点P在AC上,∠MPN=90°.
(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上,且PM⊥AB,PN⊥BC(如图①)时,则PN和PM的数量关系是:PN=______
查看答案
如图①,梯形ABCD中,DC∥AB,DE⊥AB于点E.
阅读理【解析】

在图①中,延长梯形ABCD的两腰AD、BC交于点P,过点D作DF∥CB交AB于点F,得到图②;四边形BCDF的面积为S,△ADF的面积S1,△PDC的面积S2
manfen5.com 满分网
解决问题:
(1)在图②中,若DC=2,AB=8,DE=3,则S=______,S1=______,S2=______
(2)在图②中,若AB=a,DC=b,DE=h,则manfen5.com 满分网=______,并写出理由;
拓展应用:
如图③,▱DEFC的四个顶点在△PAB的三边上,若△PDC、△ADE、△CFB的面积分别为2、3、5,试利用 (2 )中的结论求△PAB的面积.
查看答案
如图,直线y=kx+b与反比例函数manfen5.com 满分网(x<0)的图象相交于点A(-2,4)、点B(-4,n).
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOC的面积;
(3)根据图象回答:当x为何值时,manfen5.com 满分网(请直接写出答案).

manfen5.com 满分网 查看答案
在一个不透明的盒子里,装有四个分别写有数字1、2、3、4的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,摇匀后再随机取 出一个乒乓球,记下数字.
(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;
(2)求两次取出乒乓球上的数字之积小于6的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.