满分5 > 初中数学试题 >

抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,与x轴交于另一点...

抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,与x轴交于另一点B.
(1)求抛物线的解析式;
(2)已知点D(m,1-m)在第二象限的抛物线上,求点D关于直线BC的对称点的坐标;
(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求出点P的坐标.

manfen5.com 满分网
(1)由抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点,利用待定系数法即可求得抛物线的解析式; (2)由点D(m,1-m)在抛物线y=-x2-3x+4上,即可求得点D的坐标,则可求得∠CBO的度数,然后过点D作DE⊥BC于E,延长DE交y轴于F,又由点F即为点D关于直线BC的对称点,即可求得点F的坐标; (3)由∠CDB>90°,∠BCD=45°,可得点P在直线BC下方的抛物线上.然后在Rt△DCE中与Rt△BCO中,Rt△BDE中,由三角函数的知识求得∠PBO的正切值,然后过点P作PM⊥x轴于M,在Rt△BDE中,利用三角函数的知识即可求得点P的坐标. 【解析】 (1)抛物线y=ax2+bx-4a经过A(1,0)、C(0,4)两点, ∴(1分) 解得 ∴此抛物线的解析式为y=-x2-3x+4.(2分) (2)∵点D(m,1-m)在抛物线y=-x2-3x+4上, ∴-m2-3m+4=1-m, 解之,得m1=-3,m2=1. ∵点D在第二象限, ∴D(-3,4).(3分) 令y=-x2-3x+4=0, 得x1=1,x2=-4. ∴B(-4,0). ∴∠CBO=45°. 连接DC, 易知DC∥BA,DC⊥CO,DC=3, ∴∠DCB=∠CBO=45°. ∴∠BCD=45°. 过点D作DE⊥BC于E,延长DE交y轴于F, ∴∠D=45°. ∴∠CFE=45°. ∴DE=CE=EF. ∴点F即为点D关于直线BC的对称点.(4分) ∴CD=CF=3. ∴F(0,1).(5分) (3)∵∠CDB>90°,∠BCD=45°, ∴∠DBC<45° ∵∠DBP=45°, ∴点P在直线BC下方的抛物线上. 在Rt△DCE中,DC=3,∠DCE=45°, ∴DE=EC=. 在Rt△BCO中,OB=OC=4, ∴BC=4. ∴BE=. ∴在Rt△BDE中,tan∠DBE=. ∵∠DBP=∠CBO=45°, ∴∠DBC=∠PBO.(6分) ∴tan∠DBC=tan∠PBO=. 过点P作PM⊥x轴于M, ∴在Rt△BDE中,tan∠PBO==. 设PM=3t,则BM=5t, ∴OM=5t-4. ∴P(5t-4,3t).(7分) ∴-(5t-4)2-3(5t-4)+4=3t. 解得t1=0,t2=. ∴P(,).(8分)
复制答案
考点分析:
相关试题推荐
如图,在菱形ABCD中,点E、F分别为边AD、CD上的动点(都与菱形的顶点不重合),连接EF、BE、BF.
(1)若∠A=60°,且AE+CF=AB,判断△BEF的形状,并说明理由;
(2)在(1)的条件下,设菱形的边长为a,求△BEF面积的最小值.

manfen5.com 满分网 查看答案
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

manfen5.com 满分网 查看答案
某单位工会为了丰富职工的业余生活,组织职工到电影院看电影,工会根据职工报名情况购买了电影票,现将职工报名观看影片的结果统计如图:
manfen5.com 满分网
影片A、B、C的票价统计表
影片名称ABC
单价(元/张)6045x
请你根据以上信息解答下列问题:
(1)请补全统计图;
(2)小明在做题时想:若此单位决定采用随机抽取的方式把购买的电影票分配给报名的全体员工,在看不到影片名称的条件下,每人抽取一张(所有的电影票形状、大小、质地完全相同且充分洗匀),问第5位报名的职工小华抽到影片A的概率是______
(3)若购买影片C的总款数占全部电影票总款数的manfen5.com 满分网,求每张C影片的价格.
查看答案
如图,在梯形ABCD中,AB∥DC,∠A=90°,且AB=4,CD=3,BC=7.O为AD边的中点,OH⊥BC于H,求OH的长.

manfen5.com 满分网 查看答案
如图,在正方形ABCD中,A(1,1)、B(3,1),点E是DC的中点.
(1)求直线AE的解析式;
(2)设直线l与y轴交点的坐标为(0,b),当直线l∥AE且与边AB、CD同时有交点时,直接写出b的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.