①已知:△ABC中,BC=m,∠A=60°.问满足此条件的三角形有多少个?它们的最大面积存在吗?若存在求出最大面积,并回答此时三角形的形状;若不存在,请说明理由.
②有一个正方形的养鱼塘,四个角各有一棵大树.生产队设想把鱼塘扩大,使它成为一个面积最大的正方形,而又不把树挖掉,这一设想能否实现?若能,请你设计画出图形,并证明此时面积最大.若不能,请说明理由.
③上问题推广,有一个正五边形的养鱼塘,五个角各有一棵树,要扩大使它成为面积最大的正五边形,而又不把树挖掉,可以吗?画图说明.
考点分析:
相关试题推荐
学校田径运动会快要举行了,小刚用自己积攒的零花钱买了一双运动鞋,顺便想研究一下鞋码与脚的大小之间的关系,于是,小刚回家量了一下妈妈36码的鞋子,内长是23cm;量了爸爸42码的鞋子,内长是26cm;又量了自己刚买的鞋子,内长是24.5cm;然后,又看了看自己所买的鞋的鞋码,可是怎么也搞不懂一双鞋子的鞋码与其内长到底是什么关系,带着这个问题小刚去问数学老师,数学老师说:设鞋内长是xcm,这鞋子的号码是y,那么y是x的一次函数,请你写出这个一次函数关系式,并算一算小刚买了鞋是多少码?
查看答案
在抗击“非典”的斗争中,某市根据疫情的发展状况,决定全市中、小学放假两周,以切实保障广大中、小学生的安全.腾飞中学初三(1)班的全体同学在自主完成学习任务的同时,不忘关心同学们的安危,两周内全班每两个同学都通过一次电话,互相勉励,共同提高.如果该班有56名同学,那么同学们之间共通了多少次电话为解决该问题,我们可把该班人数n与通电话次数S间的关系用下列模型来表示:
(1)若把n作为点的横坐标,S作为纵坐标,根据上述模型中的数据,在给出的平面直角坐标系中,描出相应各点,并用平滑的曲线连接起来;
(2)根据日中各点的排列规律,猜一猜上述各点会不会在某一函数的图象上如果在,求出该函数的解析式;
(3)根据(2)中得出的函数关系式,求该班56名同学间共通了多少次电话.
查看答案
阅读下列短文:
如图,G是四边形ABCD对角线AC上一点,过G作GE∥CD交AD于E,GF∥CB交AB于F,若EG=FG,则有BC=CD成立,同时可知四边形ABCD与四边形AFGE相似.
解答问题:
(1)有一块三角形空地(如图△ABC),BC邻近公路,现需在此空地上修建一个正方形广场,其余地为草坪,要使广场一边靠公路,且其面积最大,如何设计,请你在下面图中画出此广场正方形.(尺规作图,不写作法)
(2)锐角△ABC是一块三角形余料,边AB=130mm,BC=150mm,AC=140mm,要把它加工成正方形零件,使正方形的一边在三角形的一边上,其余两个顶点分别在另外两条边上,且剪去正方形零件后剩下的边角料较少,这个正方形零件的边长是多少?你能得出什么结论,并证明你的结论.
查看答案
岳飞是我国古代宋朝的民族英雄,曾任通泰镇抚史、兼泰州知州.据说在泰州抗击金兵期间,有一次曾向将领们讲了如下一个布阵图,如图4是一座城池,在城池的四周设了八个哨所,一共由24个卫士把守,按直线算,每边都有11个人,后来由于军情发生变化,连续四次给哨所增添兵力,每次增加4人,但要求在增加人员后,仍然保持每边11个人把守.请问,兵力应如何调整?
查看答案
某校高一(1)班研究性学习小组对本地区2001至2003年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的直方图和快餐公司盒饭年销售量的平均数情况直方图(如图),根据图中提供的信息求出这三年中该地区每年平均销售盒饭多少万盒?
查看答案