满分5 > 初中数学试题 >

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交...

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)

manfen5.com 满分网
(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切. (2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者. (3)根据大圆的面积减去小圆的面积即可得到圆环的面积. 【解析】 (1)BC所在直线与小圆相切. 理由如下: 过圆心O作OE⊥BC,垂足为E; ∵AC是小圆的切线,AB经过圆心O, ∴OA⊥AC; 又∵CO平分∠ACB,OE⊥BC, ∴OE=OA, ∴BC所在直线是小圆的切线. (2)AC+AD=BC. 理由如下: 连接OD. ∵AC切小圆O于点A,BC切小圆O于点E, ∴CE=CA; ∵在Rt△OAD与Rt△OEB中,, ∴Rt△OAD≌Rt△OEB(HL), ∴EB=AD; ∵BC=CE+EB, ∴BC=AC+AD. (3)∵∠BAC=90°,AB=8cm,BC=10cm, ∴AC=6cm; ∵BC=AC+AD, ∴AD=BC-AC=4cm, ∵圆环的面积为:S=π(OD)2-π(OA)2=π(OD2-OA2), 又∵OD2-OA2=AD2, ∴S=42π=16π(cm2).
复制答案
考点分析:
相关试题推荐
如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.

manfen5.com 满分网 查看答案
如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程kx+b-manfen5.com 满分网=0的解(请直接写出答案);
(4)求不等式kx+b-manfen5.com 满分网<0的解集(请直接写出答案).

manfen5.com 满分网 查看答案
端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他均一切相同,洋洋喜欢吃什锦馅的粽子.
(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;
(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这种模拟试验的方法正确吗?试说明理由.

manfen5.com 满分网 查看答案
今年兰州市在全市中小学中开展以感恩和生命为主题的教育活动,各中小学结合学生实际,开展了形式多样的感恩教育活动.下面图①,图②分别是某校调查部分学生是否知道母亲生日情况的扇形统计图和条形统计图.根据图上信息,解答下列问题:
(1)求本次被调查学生的人数,并补全条形统计图;
(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?
(3)通过对以上数据的分析,你有何感想(用一句话回答).

manfen5.com 满分网 查看答案
如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.