满分5 > 初中数学试题 >

分解因式:x2-y2= .

分解因式:x2-y2=   
因为是两个数的平方差,所以利用平方差公式分解即可. 【解析】 x2-y2=(x+y)(x-y).
复制答案
考点分析:
相关试题推荐
如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,
①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,
①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.

manfen5.com 满分网 查看答案
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润B型利润
甲店200170
乙店160150
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
已知:如图①,△ABC是等边三角形,四边形BDEF是菱形,其中DF=DB,连接AF、CD.
(1)观察图形,猜想AF与CD之间有怎样的数量关系?直接写出结论,不必证明;
(2)将菱形BDEF绕点B 按顺时针方向旋转,使菱形BDEF的一边落在等边△ABC内部,在图②中画出一个变换后的图形,并对照已知图形标记字母,请问:(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)在上述旋转过程中,AF、CD所夹锐角的度数是否发生变化?若不变,请你求出它的度数,并说明你的理由;若改变,请说明它的度数是如何变化的.
manfen5.com 满分网
查看答案
操作示例
如图1,△ABC中,AD为BC边上的中线,则S△ABD=S△ADC
实践探究
(1)在图2中,E、F分别为矩形ABCD的边AD、BC的中点,则S和S矩形ABCD之间满足的关系式为______
manfen5.com 满分网
(2)在图3中,E、F分别为平行四边形ABCD的边AD、BC的中点,则S和S平行四边形ABCD之间满足的关系式为______
(3)在图4中,E、F分别为任意四边形ABCD的边AD、BC的中点,则S和S四边形ABCD之间满足的关系式为______
解决问题:
(4)在图5中,E、G、F、H分别为任意四边形ABCD的边AD、AB、BC、CD的中点,并且图中阴影部分的面积为20平方米,求图中四个小三角形的面积和,即S1+S2+S3+S4=______
manfen5.com 满分网
查看答案
已知在平面直角坐标系中,抛物线l1的解析式为y=-x2,将抛物线l1平移后得到抛物线l2,若抛物线l2经过点(3,-1),且对称轴为x=1.
(1)求抛物线l2的解析式;
(2)求抛物线l2的顶点坐标;
(3)若将抛物线l2沿其对称轴继续上下平移,得到抛物线l3,设抛物线l3的顶点坐标为B,直线OB于抛物线l3的另一个交点为C,当OB=OC时,求C点坐标.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.