如图,C在射线BM上,在平行四边形ABCD中,AC=BD=10,
,对角线AC与BD相交于O点.在射线BM上截取一点E,使OC=CE,连接OE,与边CD相交于点F.
(1)求CF的长;
(2)在没有“OC=CE”的条件下,连接DE、AE,AE与对角线BD相交于P点,若△ADE为等腰三角形,请求出DP的长.
考点分析:
相关试题推荐
如图,在线段AE的同侧作正方形ABCD和正方形BEFG(BE<AB),连接EG并延长交DC于点M,作MN⊥AB,垂足为N,MN交BD于点P.设正方形ABCD的边长为1.
(1)证明:△CMG≌△NBP;
(2)设BE=x,四边形MGBN的面积为y,求y关于x的函数解析式,并写出定义域;
(3)如果按照题设方法作出的四边形BGMP是菱形,求BE的长.
查看答案
已知:如图,在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,M为AB边的中点,连接ME、MD、ED.
(1)求证:△MED为等腰三角形;
(2)求证:∠EMD=2∠DAC.
查看答案
某产品每千克的成本价为20元,其销售价不低于成本价,当每千克售价为50元时,它的日销售数量为100千克,如果每千克售价每降低(或增加)一元,日销售数量就增加(或减少)10千克,设该产品每千克售价为x(元),日销售量为y(千克),日销售利润为w(元).
(1)求y关于x的函数解析式,并写出函数的定义域;
(2)写出w关于x的函数解析式及函数的定义域;
(3)若日销售量为300千克,请直接写出日销售利润的大小.
查看答案
解不等式组:
,并把它的解集表示在数轴上.
查看答案