满分5 > 初中数学试题 >

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐...

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)在Rt△AOB中,根据AB的长和∠BOA的度数,可求得OA的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC的长求得CD、OD的值,从而求出点C的坐标. (2)将A、C的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式. (3)根据(2)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作ME⊥CD(即抛物线对称轴)于E,过P作PQ⊥CD于Q,若四边形CDPM是等腰梯形,那么CE=QD,根据C、M、P、D四点纵坐标,易求得CE、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标. 【解析】 (1)过点C作CH⊥x轴,垂足为H; ∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2, ∴OB=4,OA=2; 由折叠的性质知:∠COB=30°,OC=AO=2, ∴∠COH=60°,OH=,CH=3; ∴C点坐标为(,3). (2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(2,0)两点, ∴, 解得; ∴此抛物线的函数关系式为:y=-x2+2x. (3)存在. ∵y=-x2+2x的顶点坐标为(,3), 即为点C,MP⊥x轴,垂足为N,设PN=t; ∵∠BOA=30°, ∴ON=t, ∴P(t,t); 作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E; 把x=t代入y=-x2+2x, 得y=-3t2+6t, ∴M(t,-3t2+6t),E(,-3t2+6t), 同理:Q(,t),D(,1); 要使四边形CDPM为等腰梯形,只需CE=QD, 即3-(-3t2+6t)=t-1, 解得t=,t=1(舍), ∴P点坐标为(,), ∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(,).
复制答案
考点分析:
相关试题推荐
如图,半径为2的⊙O,圆心在直角坐标系的原点处,直线l的函数关系式为:y=manfen5.com 满分网且与⊙O相交于点A.
(1)求点A的坐标;
(2)如果把直线l沿x轴的正方向平移,在平移的过程中,直线l能与⊙O相切吗?若能,求出相切时直线l的函数关系式;若不能,说明理由.

manfen5.com 满分网 查看答案
三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:
甲厂78999111314161719
乙厂779910101212121314
丙厂77888121314151617
(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传;
(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.
查看答案
如图,我国海军为保卫海疆,在海岸线相距20海里的A、B处设立观测站(AB为直线),海岸线以外12海里范围内为我国领海,外国船只未经许可,不得私自进入.一天观测员发现一艘外国船只行驶至C处,在A处测得∠CAB为60°,在B处测得∠CBA为45°.通过计算说明观测员是否需要向未经许可的船只发出警告,令其退回?(manfen5.com 满分网取1.4;manfen5.com 满分网取1.7)

manfen5.com 满分网 查看答案
如图,AB是半圆O的直径,长为30cm,延长AB到点C,使manfen5.com 满分网,有一个动点P从点B出发,以2π cm/s的速度沿圆周逆时针运动,当到点A立即停止运动.
(1)利用尺规作图,CP与半圆O相切时点P的位置;(不写作法,保留作图痕迹)
(2)求CP与半圆O相切时,点P运动的时间.

manfen5.com 满分网 查看答案
李明只有10000元做成本,一次性经销一种成本为每千克40元的水产品,据市场调查分析,若按每千克50元销售,一个月能售出500千克,销售单价每上涨1元,月销售量就减少10千克,要实现月销售利润8000元的目标,销售单价应定为多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.