如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax
2+bx+c的对称轴为x=-
)
考点分析:
相关试题推荐
如图1是由两块全等的含30°角的直角三角板摆放而成,斜边AC=10.
(1)若将△ADE沿直线AE翻折到如图2的位置,ED'与BC交于点F,求证:CF=EF;
(2)求EF的长;
(3)将图2中的△AD'E沿直线AE向右平移到图3的位置,使D'点落在BC上,求出平移的距离.
查看答案
如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,
(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.
查看答案
如图,在平面直角坐标系中,已知点A(0,8)、B(6,0).以△AOB的一边为边画等腰三角形,使它的第三个顶点在△AOB的一边上.请在图①、图②中分别画出一个符合条件的等腰三角形,且两个图中的等腰三角形各不相同,并在图中标明所画等腰三角形的第三个顶点的坐标(不要求尺规作图,不写求解过程).
查看答案
竹叶山汽车城销售某种型号的汽车,每辆进价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆,如果设每辆汽车降价x万元,平均每周的销售利润为y万元.
(1)求y与x之间的函数关系式,在保证商家不亏本的前提下,写出x的取值范围.
(2)销售部经理说通过降价促销,可以使每周最大利润突破50万元,他的说法对吗?
(3)要使每周的销售利润不低于48万元,那么销售单价应该定在哪个范围内?
查看答案
小明早晨从家里出发匀速步行去上学,小明的妈妈在小明出发后10分钟,发现小明的数学课本没带,于是她带上课本立即匀速骑车按小明上学的路线追赶小明,结果与小明同时到达学校.已知小明在整个上学途中,他出发后t分钟时,他所在的位置与家的距离为s千米,且s与t之间的函数关系的图象如图中的折线段OA-AB所示.
(1)试求折线段OA-AB所对应的函数关系式;
(2)请解释图中线段AB的实际意义;
(3)请在所给的图中画出小明的妈妈在追赶小明的过程中,她所在位置与家的距离s(千米)与小明出发后的时间t(分钟)之间函数关系的图象.(友情提醒:请对画出的图象用数据作适当的标注)
查看答案