考点分析:
相关试题推荐
比-2小的有理数是( )
A.-2
B.-3
C.0
D.1
查看答案
已知:如图,直线l:
经过点M(0,
),一组抛物线的顶点B
1(1,y
1),B
2(2,y
2),B
3(3,y
3),L,B
n(n,y
n)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A
1(x
1,0),A
2(x
2,0),A
3(x
3,0),L,A
n+1(x
n+1,0)(n为正整数),设x
1=d(0<d<1).
(1)求b的值;
(2)若
,求经过点A
1、B
1、A
2的抛物线的解析式;
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.
探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.
参考公式:抛物线y=ax
2+bx+c(a≠0)的顶点坐标为 (-
,
),对称轴x=-
.
查看答案
已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.
查看答案
“五一”期间,国美电器商城设计了两种优惠方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送购物券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠购物券100元;不少于600元的,所赠购物券是购买电器金额的
,另再送50元现金(注:每次购买电器时只能使用其中一种优惠方式)
(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x﹙x≥400﹚元,优惠金额为y元,则:①当x=500时,y=100;②当x≥600时,y=
x+50;
(2)如果小张想一次性购买原价为x﹙400≤x<600﹚元的电器,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式
(3)如果小张在三天内在此商城先后两次购买电器时都得到了优惠券(且第二次购买时未使用第一次的优惠券),所得优惠券金额累计达800元,设他购买电器的金额为W元,W至少应为多少(W=支付金额一所送现金金额)
查看答案
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°.
(1)求坡高CD;
(2)求斜坡新起点A到原起点B的距离(精确到0.1米).
参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09.
查看答案