满分5 > 初中数学试题 >

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交C...

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
manfen5.com 满分网
(1)可通过构建直角三角形然后运用勾股定理求解. (2)①△PMN的形状不会变化,可通过做EG⊥BC于G,不难得出PM=EG,这样就能在三角形BEG中求出EG的值,也就求出了PM的值,如果做PH⊥MN于H,PH是三角形PMH和PHN的公共边,在直角三角形PHM中,有PM的值,∠PMN的度数也不难求出,那么就能求出MH和PH的值,也就求出HN和PN的值了,有了PN,PM,MN的值,就能求出三角形MPN的周长了. ②本题分两种情况进行讨论: 1、N在CD的DF段时,PM=PN.这种情况同①的计算方法. 2、N在CD的CF段时,又分两种情况进行讨论 MP=MN时,MC=MN=MP,这样有了MC的值,x也就能求出来了 NP=NM时,我们不难得出∠PMN=120°,又因为∠MNC=60°因此∠PNM+∠MNC=180度.这样点P与F就重合了,△PMC即这是个直角三角形,然后根据三角函数求出MC的值,然后就能求出x了. 综合上面的分析把△PMC是等腰三角形的情况找出来就行了. 【解析】 (1)如图1,过点E作EG⊥BC于点G. ∵E为AB的中点, ∴BE=AB=2 在Rt△EBG中,∠B=60°,∴∠BEG=30度. ∴BG=BE=1,EG= 即点E到BC的距离为 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM⊥EF,EG⊥EF, ∴PM∥EG,又EF∥BC, ∴四边形EPMG为矩形, ∴EP=GM,PM=EG= 同理MN=AB=4. 如图2,过点P作PH⊥MN于H, ∵MN∥AB, ∴∠NMC=∠B=60°,又∠PMC=90°, ∴∠PMH=∠PMC-∠NMC=30°. ∴PH=PM= ∴MH=PM•cos30°= 则NH=MN-MH=4- 在Rt△PNH中,PN= ∴△PMN的周长=PM+PN+MN= ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形. 当PM=PN时,如图3,作PR⊥MN于R,则MR=NR. 类似①,PM=,∠PMR=30°, MR=PMcos30°=×=, ∴MN=2MR=3. ∵△MNC是等边三角形, ∴MC=MN=3. 此时,x=EP=GM=BC-BG-MC=6-1-3=2. 当MP=MN时, ∵EG=, ∴MP=MN=, ∵∠B=∠C=60°, ∴△MNC是等边三角形, ∴MC=MN=MP=(如图4), 此时,x=EP=GM=6-1-, 当NP=NM时,如图5,∠NPM=∠PMN=30度. 则∠PNM=120°,又∠MNC=60°, ∴∠PNM+∠MNC=180度. 因此点P与F重合,△PMC为直角三角形. ∴MC=PM•tan30°=1. 此时,x=EP=GM=6-1-1=4. 综上所述,当x=2或4或(5-)时,△PMN为等腰三角形.
复制答案
考点分析:
相关试题推荐
为节能减排,08年12月5日国家有关部委联合发布公告,就《成品油税费改革方案》向社会公开征求意见.对于一般的轿车用户来说,相关信息主要有两条:每年减少养路费等2400元;增加汽油的单位税额.对使用汽油的用车族来说具有以下计算公式:每年行驶的里程数y(公里)×每公里油耗x(升/公里)×0.8元=征收燃油税后每年每车多支出的费用.在总费用不变的前提下(当征收燃油税后每年每车多支出的费用=2400元时,征税前后总费用不变;少于2400元时,征税后更省钱)解答下列问题:
(1)写出每年行驶里程数y(公里)与每公里油耗x(升/公里)之间的函数关系式;
(2)小明的车(伊兰特)每公里油耗约0.08升,则年行驶多少公里时,总费用不变;
(3)已知不同车型的油耗如下表所示:
车型吉利豪情海南马自达凯美瑞别克君威
油耗
(升/百公里
781011
小亮年行驶里程数估计在2.8万公里~4万公里之间.若只考虑使用费用,请直接写出上述车型中可供小亮选择的车型.
查看答案
已知一纸箱中装有10个只有颜色不同的球,其中3个白球,7个红球,
(1)求从箱中随机取出一个白球的概率是多少?
(2)若往装有10个球的原纸箱中再放入x个白球和y个红球,从箱中随机取出一个白球的概率是manfen5.com 满分网,求y与x的函数解析式.
查看答案
manfen5.com 满分网为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图.如下所示:
组别次数x频数(人数)
第1组80≤x<1006
第2组100≤x<1208
第3组120≤x<140a
第4组140≤x<16018
第5组160≤x<1806
请结合图表完成下列问题:
(1)表中的a=______
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第______组;
(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;120≤x<140为合格;140≤x<160为良;x≥160为优.根据以上信息,请你给学校或八年级同学提一条合理化建议:______
查看答案
已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若t=-4,求a、b的值,并指出此时抛物线的开口方向;
(3)直接写出使该抛物线开口向下的t的一个值.

manfen5.com 满分网 查看答案
图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.
manfen5.com 满分网
(1)画一个底边为4,面积为8的等腰三角形;
(2)画一个面积为10的等腰直角三角形;
(3)画一个一边长为2manfen5.com 满分网,面积为6的等腰三角形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.