有一张矩形纸片ABCD,已知AB=2,AD=5,把这张纸片折叠,使点A落在边BC上的点E处,折痕为MN,MN交AB于M,交AD于N.
(1)已知BC上的点E,试画出折痕MN的位置,并保留作图痕迹.
(2)若BE=
,试求出AM的长.
(3)当点E在BC上运动时,设BE=x,AN=y,试求y关于x的函数解析式,并写出x的取值范围.
(4)连接DE,是否存在这样的点E,使△AME与△DNE相似?若存在,请求出这时BE的长,若不存在,请说明理由.
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠A=60°,∠APB的平分线PF分别交BC、AB于点D、E,交⊙O于点F、G,且BD•AE=2
.
(1)求证:△BPD∽△APE;
(2)求FE•EG的值;
(3)求tan∠BDE的值.
查看答案
如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax
2+bx+c经过x轴上的点A,B.
(1)求点A,B,C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.
查看答案
某中学一幢学楼,有大小相同的两道正门,大小相同的两道侧门.经安全检测得:开启两道正门和一道侧门,每分钟可以通过260名学生;开启一道正门和两道侧门,每分钟可以通过220名学生.
(1)平均每分钟一道正门、一道侧门分别可以通过多少名学生?
(2)紧急情况下,通过正、侧门的效率均降低为原来的80%.该校进行抗震演练,要求大楼内的全体学生必须在4分钟内通过这4道门紧急撤离.这幢楼共有20间教室,每间教室最多有50名学生.问:全体学生能否及时安全撤离?请说明理由.
查看答案
将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.
(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.
(2)摸出的两个球上数字之和为多少时的概率最大?
查看答案
已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F.请探求DF与AB有何数量关系?写出你所得到的结论并给予证明.
查看答案