满分5 > 初中数学试题 >

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),...

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒manfen5.com 满分网个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.
(1)当t为何值时,点M与点O重合;
(2)求点P坐标和等边△PMN的边长(用t的代数式表示);
(3)如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.
manfen5.com 满分网
(1)当M,O重合时,△PON是等边三角形,因此∠AMP=30°,OA=2AP,可根据OB的长和∠OAB的度数求出OA的长,即可求出AP的长,然后根据P点的速度即可求出t的值. (2)可通过构建直角三角形求解.过P分别作PQ⊥OA于点Q,PS⊥OB于点S.可在直角三角形APQ中,用AP的长和∠OQP的度数求出AQ的长,也就求出了OQ和PS的长,然后在直角三角形PSM中,可根据PS的长和∠PMN的度数求出等边三角形PMN的边长. (3)本题要分两种情况进行讨论: ①当F点在PM右侧时,即当0≤t≤1时,重合部分是个直角梯形. ②当PM和PN都与线段EF相交时,即当1<t≤2时,重合部分是个五边形,设PM,PN与EF的交点分别为I,G,那么重合部分的面积可用梯形FGNO的面积-三角形FQI的面积来求得. 可根据上述两种情况求出S,t的函数关系式.根据函数的性质和自变量的取值范围即可求得S的最大值及对应的t的值. 【解析】 (1)点M与点O重合. ∵△ABC是等边三角形, ∴∠ABO=30°,∠BAO=60°. 由OB=12, ∴AB=8,AO=4. ∵△PON是等边三角形, ∴∠PON=60度. ∴∠AOP=30度. ∴AO=2AP,即4=2t, 解得t=2. ∴当t=2时,点M与点O重合. (2)如图①,过P分别作PQ⊥OA于点Q,PS⊥OB于点S, 可求得AQ=AP=,PS=QO=OA-AQ=4-. QP=AQcot30°=×=t. ∴点P坐标为(,4-). 在Rt△PMS中,sin60°=, ∴PM=(4-)÷=8-t. (3)(Ⅰ)当0≤t≤1时,见图②. 设PN交EF于点G,则重叠部分为直角梯形FONG, 作GH⊥OB于点H. ∵∠GNH=60°,GH=2, ∴HN=2. ∵MP=8-t, ∴BM=2MP=16-2t. ∴OM=BM-OB=16-2t-12=4-2t. ∴ON=MN-OM=8-t-(4-2t)=4+t. ∴FG=OH=ON-HN=4+t-2=2+t. ∴S=(2+t+4+t)×2=2t+6. ∵S随t的增大而增大, ∴当t=1时,S最大=8. (Ⅱ)当1<t≤2时,见图③. 设PM交EF于点I,交FO于点Q,PN交EF于点G. 重叠部分为五边形OQIGN. OQ=4-2t,FQ=2-(4-2t)=2t-2,FI=FQ=2t-2. ∴三角形QFI的面积=(2t-2)(2t-2)=2(t2-2t+1). 由(Ⅰ)可知梯形OFGN的面积=2t+6, ∴S=2t+6-2(t2-2t+1)=-2(t2-3t-2). ∵-2<0, ∴当t=时,S有最大值,S最大=. 综上所述:当0≤t≤1时,S=2t+6;当1<t≤2时,S=-2t2+6t+4; ∵>8, ∴S的最大值是.
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,已知点P的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP的2倍,得到线段OP1,又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此下去,得到线段OP3,OP4…,OPn(为正整数)
(1)求点P3的坐标;
(2)我们规定:把点Pn(xn,yn)(n=0,1,2,3…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”,根据图中Pn的分布规律,求出点Pn的“绝对坐标”.
manfen5.com 满分网
查看答案
某专卖店专销售某种品牌的电子产品,进价为每只12元,售价每只20元,为了促销,专卖店决定凡是买10只以上,每多买一只,售出的所有产品每只售价均降低0.1元,但是最低价为每只16元.
(1)若顾客想以最低价购买的话,一次至少要买多少只?
(2)若x表示顾客购买该产品的数量,y表示专卖店获得的利润,求y与x的函数关系关系式;并求出专卖店一次共获利润180元时,该顾客此次所购买的产品数量.
查看答案
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=manfen5.com 满分网x2+3x+1的一部分,如图:
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.8m,在一次表演中,人梯到起跳点A的水平距离是4m,问这次表演是否成功?若能成功,请通过计算说明理由;若不能成功,应如何调整人梯的高度?

manfen5.com 满分网 查看答案
元旦节前布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小敏测量了部分彩纸链的长度,她得到的数据如下表:
纸环数x(个)1234
彩纸链长度y(cm)20355065
(1)把上表中x、y的各组对应值作为点的坐标,在如图所示的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
manfen5.com 满分网
(2)教室天花板对角线长为12m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少用多少个纸环?
查看答案
关于x的方程manfen5.com 满分网有两个不相等的实数根.
(1)求k的取值范围;    
(2)是否存在实数k,使方程两个实数根的倒数和等于0?若存在,求出k的值,若不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.