满分5 > 初中数学试题 >

如图,直线y=x-4分别交x、y轴于A、B两点,O为坐标原点. (1)求B点的坐...

如图,直线y=manfen5.com 满分网x-4分别交x、y轴于A、B两点,O为坐标原点.
(1)求B点的坐标;
(2)若D是OA中点,过A的直线l(3)把△AOB分成面积相等的两部分,并交y轴于点C.
①求过A、C、D三点的抛物线的函数解析式;
②把①中的抛物线向上平移,设平移后的抛物线与x轴的两个交点分别为M、N,试问过M、N、B三点的圆的面积是否存在最小值?若存在,求出圆的面积;若不存在,请说明理由.

manfen5.com 满分网
(1)由直线y=x-4分别交y轴于B点,令x=0,即可求得B点的坐标; (2)①由D是OA中点,过A的直线l(3)把△AOB分成面积相等的两部分,并交y轴于点C,即可求得点A,C,D的坐标,然后设过A、C、D三点的抛物线的函数解析式为:y=ax2+bx+c,利用待定系数法即可求得此二次函数的解析式; ②由抛物线的解析式可化为y=-(x-5)2+,其对称轴是x=5.由于过M、N的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小,即点B到圆心的距离要最短,过B作BE垂直抛物线的对称轴,垂足为E,则符合条件的圆是以E为圆心,EB长为半径的圆,求得圆的面积. 【解析】 (1)∵当x=0时,y=-4, ∴B点的坐标为(0,-4); (2)①∵过A的直线l(3)把△AOB分成面积相等的两部分, ∴C(0,-2), 又∵A(,0),D是OA中点, ∴D(,0), 设过A、C、D三点的抛物线的函数解析式为:y=ax2+bx+c, ∴, 解得:, ∴过A、C、D三点的抛物线的函数解析式为y=-x2+x-2; ②存在. 理由如下:抛物线的解析式可化为y=-(x-5)2+,其对称轴是x=5. 由于过M、N的圆的圆心必在对称轴上,要使圆的面积最小,则圆的半径要最小, 即点B到圆心的距离要最短,过B作BE垂直抛物线的对称轴,垂足为E, 则符合条件的圆是以E为圆心,EB长为半径的圆, 其面积为25π.
复制答案
考点分析:
相关试题推荐
如图在直角坐标系XOY中,A、B两点的坐标分别为A(0,8)和B(6,0).
(1)求AB的长.
(2)若线段AB保持长度不变,点A在y轴正半轴上向下滑动到点C,则点B在x轴正半轴上向右滑动到点D.
①如果AC=1,那么BD比1大,还是比1小,或者等于1,为什么?
②当点A和点B滑动距离相等时,求此时直线CD与原直线AB的交点坐标.

manfen5.com 满分网 查看答案
某学校初三(1)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五•一”期间的销售情况,如图是调查后,小敏与其他两位同学进行交流的情景.根据他们的对话,请分别求出A、B两个超市今年“五•一”期间的销售额.
manfen5.com 满分网
查看答案
如图,在规格为8×8的正方形网格中建立平面直角坐标系,请在所给网格中按下列要求操作:
(1)直接写出A、B两点的坐标;
(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,求C点坐标;
(3)以(2)中△ABC的顶点C为旋转中心,画出△ABC旋转180°后所得到的△DEC,连接AE和BD,试判定四边形ABDE是什么特殊四边形,并说明理由.
manfen5.com 满分网
查看答案
小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下.小明和小亮各从中任意抽取一张.计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.
(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;
(2)请判断该游戏对双方是否公平,并说明理由;
(3)若小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张.其他条件不变,则小明获胜的概率为______
查看答案
如图,在某建筑物AC上,挂着“多彩贵州”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为30°,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为60°,求宣传条幅BC的长.(小明的身高不计,结果精确到0.1米)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.