两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:
甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.
如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为甲、乙两人采用的方案,哪一种方案使自己乘坐上等车的可能性大,为什么?
考点分析:
相关试题推荐
如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r
2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______.
查看答案
城市规划期间,欲拆除一电线杆AB(如图),已知与电线杆AB水平距离14米的D处有一等腰梯形大坝CDEF,该梯形的上底CF长为3米,下底DE长为5米,∠CDE=60°,在坝顶C处测得杆顶A的仰角为30°,D、G之间是宽3米的人行道.试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封闭?请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)
查看答案
如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)观察猜想BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.
查看答案
已知:
,试说明在右边代数式有意义的条件下,不论x为何值,y的值不变.
查看答案