已知平面直角坐标系xOy中,点A在抛物线y=
x
2+
上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.
查看答案
阅读下列材料,解答问题.
饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500w的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.
问题:(1)在未购买饮水机之前,全年平均每个学生要花费______元钱来购买纯净水饮用;
(2)请计算:在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?
(3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约______元.
查看答案