满分5 > 初中数学试题 >

如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延...

如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.
(1)求证:PQ是⊙O的切线;
(2)若⊙O的半径为4,TC=2manfen5.com 满分网,求图中阴影部分的面积.

manfen5.com 满分网
(1)连接OT,由AT平分∠BAD,根据角平分线定义得到∠BAT与∠CAT相等,再由半径OA与OT相等,根据等边对等角得到∠OTA与∠BAT相等,等量代换得到内错角∠OTA与∠CAT相等,所以OT与PQ平行,由AC与PQ垂直,根据平面上与平行线中的一条垂直,与另一条也垂直得到OT与PQ垂直,则PQ为⊙O的切线; (2)连接OM,OD,TD,过O作OM⊥AC,由OM和OA的长,利用正弦函数定义求出∠OAD的度数,进而求出∠ATC和∠TOD的度数,得到∠DTC的度数,在直角三角形TDC中,由TC的长求出DC的长,然后阴影部分的面积等于梯形CDOT的面积减去扇形OTD的面积,分别利用梯形的面积公式和扇形的面积公式,求出即可. (1)证明:连接OT,如图所示: ∵AT平分∠BAD,∴∠BAT=∠CAT, 又∵OA=OT,∴∠OTA=∠BAT, ∴∠OTA=∠CAT, ∴OT∥AC,又AC⊥PQ, ∴OT⊥PQ, ∴PQ是⊙O的切线; (2)【解析】 连接OD,TD,过O作OM⊥AC垂足为M,如图所示: ∵OM=TC=2,OA=4,OM⊥AC, ∴sin∠OAM==,故∠OAM=60°, ∴∠OAT=∠COT=∠ATD=30°,∠TOD=60°, 又∠DCT=90°,∴∠ATC=60°, ∴∠DTC=30°,TC=2, ∴DC=2, ∴S阴影=S梯形CDOT-S扇形OTD =- =6-.
复制答案
考点分析:
相关试题推荐
有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
查看答案
小明在某风景区的观景台O处观测到北偏东50°的P处有一艘货船,该船正向南匀速航行,30分钟后再观察时,该船已航行到O的南偏东40°,且与O相距2km的Q处,如图所示.
(1)则∠OPQ=______°,∠OQP=______°.
(2)求货船的航行速度是多少km/h?(结果精确到0.1km/h)
已知:sin50°=cos40°=0.77,cos50°=sin40°=0.64,tan50°=1.19,tan40°=0.84,供选用.

manfen5.com 满分网 查看答案
吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从2011年元月一日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织同学们在某社区开展了“你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结果整理后制成了如下统计图:
manfen5.com 满分网
根据统计图解答:
(1)同学们一共随机调查了多少人?
(2)请你把统计图补充完整;
(3)如果在该社区随机咨询一位市民,那么该市民支持“强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持“警示戒烟”这种方式?
查看答案
在小正方形组成的15×15的网格中,四边形ABCD和四边形A′B′C′D′的位置如图所示.
(1)现把四边形ABCD绕D点按顺时针方向旋转90°,画出相应的图形A1B1C1D1
(2)若四边形ABCD平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A2B2C2D2

manfen5.com 满分网 查看答案
已知:如图,AB∥CD,∠1=∠2,AB=CD.
求证:△ABE≌△CDF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.