满分5 > 初中数学试题 >

如图,抛物线y=x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,...

如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.

manfen5.com 满分网
(1)把A点的坐标代入抛物线解析式,求b的值,即可得出抛物线的解析式,根据顶点坐标公式,即可求出顶点坐标; (2)根据直角三角形的性质,推出AC2=OA2+OC2=5,BC2=OC2+OB2=20,即AC2+BC2=25=AB2,即可确定△ABC是直角三角形; (3)作出点C关于x轴的对称点C′,则C′(0,2),OC'=2.连接C'D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小.首先确定最小值,然后根据三角形相似的有关性质定理,求m的值 【解析】 (1)∵点A(-1,0)在抛物线y=x2+bx-2上, ∴×(-1 )2+b×(-1)-2=0,解得b= ∴抛物线的解析式为y=x2-x-2. y=x2-x-2 =( x2-3x-4 ) =(x-)2-, ∴顶点D的坐标为 (,-). (2)当x=0时y=-2,∴C(0,-2),OC=2. 当y=0时,x2-x-2=0,∴x1=-1,x2=4,∴B (4,0) ∴OA=1,OB=4,AB=5. ∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20, ∴AC2+BC2=AB2.∴△ABC是直角三角形. (3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2, 连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小. 解法一:设抛物线的对称轴交x轴于点E. ∵ED∥y轴,∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴ ∴, ∴m=. 解法二:设直线C′D的解析式为y=kx+n, 则, 解得:. ∴. ∴当y=0时,,. ∴.
复制答案
考点分析:
相关试题推荐
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)判断DE与⊙O的位置关系,并证明你的结论;
(3)若⊙O的直径为18,cosB=manfen5.com 满分网,求DE的长.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
(1)说明四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.

manfen5.com 满分网 查看答案
某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
(1)求每件T恤和每本影集的价格分别为多少元?
(2)有几种购买T恤和影集的方案?
查看答案
如图,已知反比例函数manfen5.com 满分网的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数manfen5.com 满分网的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长.

manfen5.com 满分网 查看答案
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-l,-2和-3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=x-3上的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.