满分5 > 初中数学试题 >

如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A...

如图,在平面直角坐标系中,以点C(0,4)为圆心,半径为4的圆交y轴正半轴于点A,AB是⊙C的切线.动点P从点A开始沿AB方向以每秒1个单位长度的速度运动,点Q从O点开始沿x轴正方向以每秒4个单位长度的速度运动,且动点P、Q从点A和点O同时出发,设运动时间为t(秒).
(1)当t=1时,得到P1、Q1两点,求经过A、P1、Q1三点的抛物线解析式及对称轴l;
(2)当t为何值时,直线PQ与⊙C相切并写出此时点P和点Q的坐标;
(3)在(2)的条件下,抛物线对称轴l上存在一点N,使NP+NQ最小,求出点N的坐标并说明理由.

manfen5.com 满分网
(1)先求出t=1时,AP和OQ的长,即可求得P1,Q1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l的解析式. (2)当直线PQ与圆C相切时,连接CP,CQ则有Rt△CMP∽Rt△QMC(M为PG与圆的切点),因此可设当t=a秒时,PQ与圆相切,然后用a表示出AP,OQ的长即PM,QM的长(切线长定理).由此可求出a的值. (3)本题的关键是确定N的位置,先找出与P点关于直线l对称的点P′的坐标,连接P′Q,那么P′Q与直线l的交点即为所求的N点,可先求出直线P′Q的解析式,进而可求出N点的坐标. 【解析】 (1)由题意得A、P1、Q1的坐标分别为A(0,8)、P1(1,8)、Q1(4,0)(1分) 设所求抛物线解析式为y=ax2+bx+c 则 ∴a=-,b=,c=8 ∴所求抛物线为y=-x2++8 对称轴为直线l:x=; (2)设t=a时,PQ与⊙C相切于点M 连接CP、CM、CQ,则PA=PM=a,QO=QM=4a 又∵CP、CQ分别平分∠APQ和∠OQP, 而∠APQ+∠OQP=180° ∴∠PCQ=90° ∴PC⊥CQ ∴Rt△CMP∽Rt△QMC ∴即 ∴a=±2 由于时间a只能取正数, 所以a=2 即当运动时间t=2时,PQ与⊙C相切 此时:P(2,8),Q(8,0); (3)点P关于直线l的对称点为P(-1,8) 则直线PQ的解析式为:y= 当x=时,y=-×+==. 因此N点的坐标为(,).
复制答案
考点分析:
相关试题推荐
已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=manfen5.com 满分网.求证:
(1)△CDB∽△CAD;
(2)CD是⊙O的切线.

manfen5.com 满分网 查看答案
有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;
(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式;
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额).
查看答案
如图,有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,再随机摸出一张(不放回).
manfen5.com 满分网
(1)随机摸一张牌是轴对称图形的概率是多少?
(2)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);
(3)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.
查看答案
如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:manfen5.com 满分网≈1.73)

manfen5.com 满分网 查看答案
有甲、乙两家通迅公司,甲公司每月通话的收费标准如图所示;乙公司每月通话收费标准如表3所示.
manfen5.com 满分网
(1)观察图,甲公司用户月通话时间不超过100分钟时应付话费金额是______元;甲公司用户通话100分钟以后,每分钟的通话费为______元;
(2)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.