如图,已知△ABC的顶点B、C为定点,A为动点(不在直线BC上),B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点,连接BC′、CB′、BB′、CC′.
(1)猜想线段BC′与CB′的数量关系,并证明你的结论;
(2)当点A运动到怎样的位置时,四边形BCB′C′为菱形?这样的位置有几个?请用语言对这样的位置进行描述(不用证明);
(3)当点A在线段BC的垂直平分线(BC的中点及到BC的距离为
的点除外)上运动时,判断以点B、C、B′、C′为顶点的四边形的形状,画出相应的示意图.(不用证明)
考点分析:
相关试题推荐
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax
2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
查看答案
如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=
,求⊙O的半径.
查看答案
“5•12”汶川大地震震惊全世界,面对人类特大灾害,在党中央国务院的领导下,全国人民万众一心,众志成城,抗震救灾.现在A,B两市各有赈灾物资500吨和300吨,急需运往汶川400吨,运往北川400吨,从A,B两市运往汶川,北川的耗油量如下表:
| 汶川(升/吨) | 北川(升/吨) |
A市 | 0.5 | 0.8 |
B市 | 1.0 | 0.4 |
(1)若从A市运往汶川的赈灾物资为x吨,求完成以上运输所需总耗油量y(升)与x(吨)的函数关系式;
(2)请你设计一种最佳运输方案,使总耗油量最少,并求出完成以上方案至少需要多少升油.
查看答案
甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)
甲超市:
乙超市:
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.
查看答案
今年受全球金融危机的影响,出现了大学毕业生就业难的问题,政府为了积极采取措施,需要掌握求职者求职情况.求职者每人都投出50张求职申请,对“得到用人单位面视通知的次数”作统计,如图:
(1)那么这个统计中的样本是______;众数是______.
(2)如果a:b:c:d:e=2:3:5:8:12,样本容量是900,求中位数、平均数和没得到用人单位面视通知的人数.
(3)任意采访一个大学毕业生的求职者,求出他“至少得到一次用人单位面视通知”的概率.
查看答案