满分5 > 初中数学试题 >

已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在C...

已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.
(1)根据题目所提供的信息,可求得b=______,a=______,m=______
(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;
(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.
manfen5.com 满分网
(1)由图②的函数图象知:从第4-5秒,S的值恒为12,即此时矩形全部落在正方形的内部,由此可求得两个条件:①矩形的面积为12,②正方形的边长为1+DE,根据这两个条件求解即可. (2)当0≤t≤5时,矩形在直线AB的左侧,可用t表示出AD′、PF′的长,易求得D′G、CP的长,即可用勾股定理求得AG′2、CF′2的值,即可得到y、t的函数关系式. (3)此题要分五种情况讨论: ①当0≤t<4时,点E′在D点右侧;由于∠HG′F′、∠HF′G′都是锐角,显然直线AG′与CF′不可能平行;当两条直线垂直时,△G′HF′是直角三角形,易证得△AD′G′∽△CPF′,根据相似三角形得到的比例线段即可求得t的值; ②当t=4时,D、E′重合,此时直线DC与E′F′重合,显然此时AG′与CF′既不平行也不垂直,因为过直线外一点,有且只有一条直线与已知直线平行或垂直; ③当4<t<5时,矩形在正方形的内部,延长G′F′交BC于P,延长AG′交CD于Q,此时∠CF′P是锐角,所以∠CF′G是钝角,显然AG′与CF′不可能垂直;当两直线平行时,可证得△AD′G′∽△F′PC,进而可根据相似三角形得到的比例线段求得t的值; ④当t=5时,此种情况与②相同; ⑤当5<t<9时,此时∠QG′F′与∠CF′G′都是钝角,显然AG′与CF′不可能平行;当两直线垂直时,可延长CF′与AG′相交于点M,延长G′F′与CD相交于点P,通过证△AD′G′∽△CPF′来求得此时t的值. 【解析】 (1)由图②知:从第4到第5秒时,S的值恒为12,此时矩形全部落在正方形的内部, 那么矩形的面积为12,即可求得DE=4; 这个过程持续了1秒,说明正方形的边长为:DE+1=5; 由于矩形的速度恒定,所以5~m也应该用4秒的时间,故m=5+4=9; 即:b=4,a=5,m=9. (2)如图,当0≤t≤5时, ∵AD′=5-t,D′G=3,PF′=4-t,CP=2, ∴y=9+(5-t)2+4+(4-t)2, ∴y=2(t-)2+, ∴当t=时,y有最小值,y最小值=. (3)①当0≤t<4时,分别延长AG′和F′C; 如图,由于∠1和∠2都是锐角,所以∠1+∠2<180°, 所以AG′与CF′不可能平行. 设AG′与F′C的延长线交于点H, 当∠G′AD′=∠PCF′时,直线AG′⊥CF′; ∴△AD′G′∽△CPF′, ∴, ∴=, 解得t1=2,t2=7(不合题意,舍去). ②当t=4时,由于点F′在CD上,而点G′不在直线AD上, 因为AD⊥CD,所以AG′不可能也垂直于CD (因为过直线外一点有且只有一条直线与已知直线垂直). 同样,由于AB∥CD,而点G′不在直线AB上, 所以t=4时,AG′也不可能平行于CD(CF′) (因为过直线外一点,有且只有一条直线与已知直线平行). ③4<t<5时,延长G′F′交PC于P,延长AG′交CD于Q, 由于∠CF′P是锐角,所以∠CF′G是钝角, 所以∠CF′G+∠QGF′≠90°,所以AG′与CF′不可能垂直; 当∠G′AD′=∠CF′P时,AG′∥CF′, 易得△AD′G′∽△F′PC, ∴, ∴=, 解得t=4.4. ④当t=5时,AG′与CF′既不可能垂直也不可能平行,理由同②. ⑤当5<t<9时,因为∠QG′F′与∠CF′G′都是钝角, 所以∠QG′F′+∠CF′G′>180°, 所以AG′与CF′不可能平行. 延长CF′与AG′相交于点M,延长G′F′与CD相交于点P; 当∠MG′F′+∠MF′G′=90°时,AG′⊥CF′; 又∵∠AG′D′+∠AG′F′=90°,∠MF′G′=∠CF′P, ∴∠AG′D′=∠CF′P,又∠AD′G′=∠F′PC, ∴△AD′G′∽△CPF′, ∴,即; 解得:t1=2(不合题意,舍去),t2=7; 所以,综上所述,当t=2或t=7时,直线AG′与直线CF′垂直,当t=4.4时,直线AG′与直线CF′平行.
复制答案
考点分析:
相关试题推荐
河北北部地区温差大,日照强,极易种植错季蔬菜.不仅给当地农民增加了收入,还使周围城市市民吃上了优质蔬菜.今年秋天幸福村的塞上Ⅰ号蔬菜喜获丰收.为了探明塞上Ⅰ号蔬菜销售状况,幸福村村委会决定试销32吨.村委会雇佣甲、乙、丙三种不同型号汽车共10辆.正好装完且都装满.已知装满时甲、乙、丙三种汽车的载重量分别为4吨、3吨、2吨.设甲种汽车为x辆,乙种汽车为y辆.
(1)①用含x,y的式子表示丙种汽车的数量;
②求出y与x的函数关系式;
(2)已知这次运输甲、乙、丙三种汽车的费用分别为500元、450元、300元,应如何安排三种汽车数量,使这次运输的总费用W最少?
查看答案
如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.
manfen5.com 满分网
(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;
(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
查看答案
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)若⊙P与x轴有公共点,则k的取值范围是______
(2)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(3)当⊙P与直线l相切时,k的值为______

manfen5.com 满分网 查看答案
如图,抛物线y=manfen5.com 满分网x2+bx-2与x轴交于A,B两点,与y轴交于C点,且A(-1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)若E是抛物线上异于C的点,且S△ABE=S△ABC,则满足条件的点E有______ 个;
(3)判断△ABC的形状,证明你的结论.

manfen5.com 满分网 查看答案
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求表示户外活动时间1小时的扇形圆心角的度数;
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.