满分5 > 初中数学试题 >

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利...

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
(1)列出二元一次方程组解出k与b的值可求出一次函数的表达式. (2)依题意求出W与x的函数表达式可推出当x=87时商场可获得最大利润. (3)由w=500推出x2-180x+7700=0解出x的值即可. 【解析】 (1)根据题意得 解得k=-1,b=120. 所求一次函数的表达式为y=-x+120.(2分) (2)W=(x-60)•(-x+120) =-x2+180x-7200 =-(x-90)2+900,(4分) ∵抛物线的开口向下, ∴当x<90时,W随x的增大而增大, 而销售单价不低于成本单价,且获利不得高于45%, 即60≤x≤60×(1+45%), ∴60≤x≤87, ∴当x=87时,W=-(87-90)2+900=891. ∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(6分) (3)由W≥500,得500≤-x2+180x-7200, 整理得,x2-180x+7700≤0, 而方程x2-180x+7700=0的解为 x1=70,x2=110.(7分) 即x1=70,x2=110时利润为500元,而函数y=-x2+180x-7200的开口向下,所以要使该商场获得利润不低于500元,销售单价应在70元到110元之间, 而60元/件≤x≤87元/件,所以,销售单价x的范围是70元/件≤x≤87元/件.(10分)
复制答案
考点分析:
相关试题推荐
已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a-2b+c=0;②a<b<0;③2a+c>0;④2a-b+1>0.其中正确结论的个数是    个.
manfen5.com 满分网 查看答案
如图,点A1,A2,A3,A4在射线OA上,点B1,B2,B3在射线OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3.若△A2B1B2,△A3B2B3的面积分别为1,4,则图中三个阴影三角形面积之和为   
manfen5.com 满分网 查看答案
已知:如图,△ABC内接于⊙O,过A作⊙O切线交CB延长线于P,PD平分∠APC,交AB、AC于D、E,若manfen5.com 满分网,AC=10,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
对于直线y=kx+b,k,b均可以在-1,0,1,2中任意选取,则该函数图象不经过第二象限的概率为    查看答案
已知:x2=12,求代数式manfen5.com 满分网的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.