满分5 > 初中数学试题 >

(1)操作发现: 如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠...

(1)操作发现:
如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
manfen5.com 满分网
(1)根据翻折的性质得出BE=EF,∠B=∠EFA,利用三角形全等的判定得△ECG≌△EFG,即可得出答案; (2)利用平行四边形的性质,首先得出∠C=180°-∠D,∠EFG=180°-∠AFE=180°-∠B=180°-∠D,进而得出∠ECG=∠EFG,再利用EF=EC,得出∠EFC=∠ECF,即可得出答案. 【解析】 (1)猜想线段GF=GC, 证明:连接EG, ∵E是BC的中点, ∴BE=CE, ∵将△ABE沿AE折叠后得到△AFE, ∴BE=EF, ∴EF=EC, ∵EG=EG,∠C=∠EFG=90°, ∴△ECG≌△EFG(HL), ∴FG=CG; (2)(1)中的结论仍然成立. 证明:连接EG,FC, ∵E是BC的中点, ∴BE=CE, ∵将△ABE沿AE折叠后得到△AFE, ∴BE=EF,∠B=∠AFE, ∴EF=EC, ∴∠EFC=∠ECF, ∵矩形ABCD改为平行四边形, ∴∠B=∠D, ∵∠ECD=180°-∠D,∠EFG=180°-∠AFE=180°-∠B=180°-∠D, ∴∠ECD=∠EFG, ∴∠GFC=∠GFE-∠EFC=∠ECG-∠ECF=∠GCF, ∴∠GFC=∠GCF, ∴FG=CG; 即(1)中的结论仍然成立.
复制答案
考点分析:
相关试题推荐
如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)已知∠B=28°,⊙O的半径为6,求线段AD的长.(结果精确到0.1)

manfen5.com 满分网 查看答案
为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.
(1)求y与x之间的函数关系式;
(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?
查看答案
在“5•12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整):
分组频数频率
60≤x<7020.05
70≤x<8010
80≤x<900.40
90≤x≤100120.30
合计1.00
请根据上述图表提供的信息,完成下列问题:
(1)分别补全频数分布表和频数分布直方图;
(2)若从该校随机1名学生进行这项测验,估计其成绩不低于80分的概率约为______

manfen5.com 满分网 查看答案
如图,△ABC三个顶点坐标分别为A (1,2),B (3,1),C (2,3),以原点O为位似中心,将△ABC放大为原来的2倍得△A′B′C′.
(1)在图中第一象限内画出符合要求的△A′B′C′;(不要求写画法)
(2)△A′B′C′的面积是:______

manfen5.com 满分网 查看答案
解不等式组:manfen5.com 满分网,并把它的解集在数轴上表示出来.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.