3的相反数是( )
A.
B.
C.3
D.-3
考点分析:
相关试题推荐
定义:对于抛物线y=ax
2+bx+c(a、b、c是常数,a≠0),若b
2=ac,则称该抛物线为黄金抛物线.例如:y=2x
2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax
2+bx+c(a、b、c是常数,a≠0)是黄金抛物线,请探究该黄金抛物线与x轴的公共点个数的情况(要求说明理由);
(3)将(2)中的黄金抛物线沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y轴交于点A,对称轴与x轴交于点B,动点Q在对称轴上,问新抛物线上是否存在点P,使以点P、Q、B为顶点的三角形与△AOB全等?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax
2+bx+c(a≠0)的对称轴是x=-
,顶点坐标是(-
,
)】.
查看答案
(1)操作发现:
如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
查看答案
如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)已知∠B=28°,⊙O的半径为6,求线段AD的长.(结果精确到0.1)
查看答案
为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.
(1)求y与x之间的函数关系式;
(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?
查看答案
在“5•12防灾减灾日”之际,某校随机抽取部分学生进行“安全逃生知识”测验根据这部分学生的测验成绩(单位:分)绘制成如下统计图(不完整):
分组 | 频数 | 频率 |
60≤x<70 | 2 | 0.05 |
70≤x<80 | 10 | |
80≤x<90 | | 0.40 |
90≤x≤100 | 12 | 0.30 |
合计 | | 1.00 |
请根据上述图表提供的信息,完成下列问题:
(1)分别补全频数分布表和频数分布直方图;
(2)若从该校随机1名学生进行这项测验,估计其成绩不低于80分的概率约为______.
查看答案