满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M...

如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).
(1)当t为何值时,四边形PQCM是平行四边形?
(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCM=manfen5.com 满分网S△ABC?若存在,求出t的值;若不存在,说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.

manfen5.com 满分网
(1)假设PQCM为平行四边形,根据平行四边形的性质得到对边平行,进而得到AP=AM,列出关于t的方程,求出方程的解得到满足题意t的值; (2)过点P作PE垂直AC.由PQ运动的速度和时间t可知线段BP=t,根据PQ∥AC可得△PBQ∽△ABC,根据相似三角形的形状必然相同可知三角形BPQ也为等腰三角形,即BP=PQ=t,再由证得的相似三角形得底比底等于高比高,用含t的代数式就可以表示出BF,进而得到梯形的高PE=DF=8-t,又点M的运动速度和时间可知点M走过的路程AM=2t,所以梯形的下底CM=10-2t.最后根据梯形的面积公式即可得到y与t的关系式; (3)根据三角形的面积公式,先求出三角形ABC的面积,又根据S四边形PQCM=S△ABC,求出四边形PQCM的面积,从而得到了y的值,代入第二问求出的y与t的解析式中求出t的值即可; (4)假设存在,则根据垂直平分线上的点到线段两端点的距离相等即可得到MP=MC,过点M作MH垂直AB,由一对公共角的相等和一对直角的相等即可得到△AHM∽△ADB,由相似得到对应边成比例进而用含t的代数式表示出AH和HM的长,再由AP的长减AH的长表示出PH的长,从而在直角三角形PHM中根据勾股定理表示出MP的平方,再由AC的长减AM的长表示出MC的平方,根据两者的相等列出关于t的方程进而求出t的值. 【解析】 (1)假设四边形PQCM是平行四边形,则PM∥QC, ∴AP=AM,即10-t=2t, 解得t=, ∴当t=s时,四边形PQCM是平行四边形; (2)过P作PE⊥AC,交AC于E,如图所示: ∵PQ∥AC, ∴△PBQ∽△ABC, ∴△PBQ为等腰三角形,PQ=PB=t, ∴=,即=, 解得BF=t, ∴FD=BD-BF=8-t, 又∵MC=AC-AM=10-2t, ∴y=(PQ+MC)•FD=(t+10-2t)(8-t)=t2-8t+40; (3)S△ABC=AC•BD=×10×8=40, 当y=S△ABC=×40=时, 即t2-8t+40=, 解得:t1=,t2=(舍去); (4)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC, 过M作MH⊥AB,交AB与H, ∵∠A=∠A,∠AHM=∠ADB=90°, ∴△AHM∽△ADB, ∴==,又AD==6, ∴==, ∴HM=t,AH=t, 即HP=10-t-t=10-t, 在直角三角形HMP中,MP2=+=t2-44t+100, 又∵MC2=(10-2t)2=100-40t+4t2, ∵MP2=MC2, 即t2-44t+100=100-40t+4t2, 解得:t1=,t2=0(舍去), ∴t=s时点M在线段PC的垂直平分线上.
复制答案
考点分析:
相关试题推荐
问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
【解析】
由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知小丽和小颖购买同一种商品的平均价格分别为manfen5.com 满分网元/千克和manfen5.com 满分网元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.
(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).
manfen5.com 满分网
联系拓广
小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.
manfen5.com 满分网
查看答案
某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y件与销售单价x元之间的函数关系式;
(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;
(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
查看答案
在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
某企业为了改善污水处理条件,决定购买A、B两种型号的污水处理设备共8台,其中每台的价格、月处理污水量如下表:
经预算,企业最多支出57万元购买污水处理设备,且要求设备月处理污水量不低于1490吨.
(1)企业有哪几种购买方案?
(2)哪种购买方案更省钱?
A型B型
价      格(万元/台)86
月处理污水量(吨/月)200180

查看答案
某商场准备改善原有楼梯的安全性能,把倾斜角由原来的40°减至35°.已知原楼梯AB长为5m,调整后的楼梯所占地面CD有多长?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,sin35°≈0.57,tan35°≈0.70)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.