某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y
甲(棵),乙班植树的总量为y
乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时).y
甲、y
乙分别与x之间的部分函数图象如图所示.
(1)当0≤x≤6时,分别求y
甲、y
乙与x之间的函数关系式.
(2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵?
(3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵?
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F,
(1)求证:BD=BF;
(2)当BC=3,AD=2时,求⊙O的面积;
(3)在(2)的条件下,判断△DBF是否为正三角形?并说明你的理由.
查看答案
已知关于x的方程k
有两个不相等的实数根.
(1)求实数k的取值范围;
(2)设方程的两实根为x
1和x
2(x
1≠x
2),那么是否存在实数k,使
成立?若存在,请求出k的值;若不存在,请说明理由.
查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.
查看答案
如图,在平面直角坐标系中,△ABC的顶点坐标为A(-2,3)、B(-3,2)、C(-1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A
1B
1C
1;
(2)画出△A
1B
1C
1绕原点旋转180°后得到的△A
2B
2C
2;
(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:______;
(4)顺次连接C、C
1、C′、C
2,所得到的图形是轴对称图形吗?
查看答案
先化简,再求代数式的值:
,其中a=tan60°-2sin30°.
查看答案