满分5 > 初中数学试题 >

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆...

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?

manfen5.com 满分网
(1)依题意可得∠OMC=∠MNC,然后可证得△ODM∽△MCN. (2)设DM=x,OA=OM=R,OD=AD-OA=8-R,根据勾股定理求出OA的值. (3)由1可求证△ODM∽△MCN,利用线段比求出CN,MN的值.然后可求出△CMN的周长等于CM+CN+MN,把各个线段消去代入可求出周长. (1)证明:∵MN切⊙O于点M, ∴∠OMN=90°;(1分) ∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°; ∴∠OMD=∠MNC;(2分) 又∵∠D=∠C=90°; ∴△ODM∽△MCN,(3分) (2)【解析】 在Rt△ODM中,DM=x,设OA=OM=R; ∴OD=AD-OA=8-R,(4分) 由勾股定理得:(8-R)2+x2=R2,(5分) ∴64-16R+R2+x2=R2, ∴;(6分) (3)解法一:∵CM=CD-DM=8-x, 又∵, 且有△ODM∽△MCN, ∴, ∴代入得到;(7分) 同理, ∴代入得到;(8分) ∴△CMN的周长为P==(8-x)+(x+8)=16.(9分) 发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分) 解法二:在Rt△ODM中,, 设△ODM的周长P′=;(7分) 而△MCN∽△ODM,且相似比;(8分) ∵, ∴△MCN的周长为P=.(9分) 发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)
复制答案
考点分析:
相关试题推荐
2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.
manfen5.com 满分网
(1)求∠DAC的度数;
(2)求这棵大树折断前高是多少米?(注:结果精确到个位)(参考数据:manfen5.com 满分网
查看答案
矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:
(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.
(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是______
(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;
(2)求图②中表示家长“无所谓”的圆心角的度数;
(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.
查看答案
今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?
查看答案
解不等式组:manfen5.com 满分网,并把解集在数轴上表示出来.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.