满分5 > 初中数学试题 >

如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以...

如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M,以AB为一边作正方形ABCD.
(1)求C,M两点的坐标;
(2)连接CM,试判断直线CM是否与⊙P相切?说明你的理由;
(3)在x轴上是否存在一点Q,使得△QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)依题意推出AB=BC=CD=AD,连接PM,根据勾股定理求出OM的值后可求出点M的坐标; (2)本题有多种方法解答.首先连接PC,CM,根据勾股定理先求出CM的值,然后证明△CMP≌△CPB即可证得∠CMP=∠CBP=90°; (3)本题有几种解法,符合题意即可,首先作M点关于x轴的对称点M',连接M'C,根据题意可知QM+QC的和最小,因为MC为定值,故△QMC的周长最小,证明△M'OQ∽△M'EC,利用线段比求出OQ的值. 【解析】 (1)∵A(-2,0),B(8,0),四边形ABCD是正方形, ∴AB=BC=CD=AD=10,⊙P的半径为5,(1分) C(8,10),(2分) 连接PM,PM=5,在Rt△PMO中, ∴M(0,4);(3分) (2)方法一:直线CM是⊙P的切线.(4分) 证明:连接PC,CM,如图(1), 在Rt△EMC中,(5分) ∴CM=CB 又∵PM=PB,CP=CP ∴△CPM≌△CPB(6) ∴∠CMP=∠CBP=90° CM是⊙P的切线;(7分) 方法二:直线CM是⊙P的切线.(4分) 证明:连接PC,如图(1),在Rt△PBC中, PC2=PB2+BC2=52+102=125(5分) 在Rt△MEC中 ∴CM2=CE2+ME2=82+62=100(6分) ∴PC2=CM2+PM2 ∴△PMC是直角三角形,即∠PMC=90° ∴直线CM与⊙P相切.(7分) 方法三:直线CM是⊙P的切线.(4分) 证明:连接MB,PM如图(2), 在Rt△EMC中,(5) ∴CM=CB ∴∠CBM=∠CMB(6) ∴PM=PB∴∠PBM=∠PMB ∴∠PMB+∠CMB=∠PBM+∠CBM=90° 即PM⊥MC ∴CM是⊙P的切线;(7分) (3)方法一:作M点关于x轴的对称点M',则M′(0,-4), 连接M'C,与x轴交于点Q,此时QM+QC的和最小, 因为MC为定值,所以△QMC的周长最小,(8分) ∵△M'OQ∽△M′EC ∴(9分) ∴;(10分) 方法二:作M点关于x轴的对称点M′,则M′(0,-4), 连接M'C,与x轴交于点Q,此时QM+QC的和最小, 因为MC为定值,所以△QMC的周长最小,(8分) 设直线M'C的解析式为y=kx+b, 把M′(0,-4)和C(8,10)分别代入得, 解得 ∴,当y=0时,(9分) ∴.(10分)
复制答案
考点分析:
相关试题推荐
如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:manfen5.com 满分网≈1.732,manfen5.com 满分网≈1.414)

manfen5.com 满分网 查看答案
荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
查看答案
如图,直线y=x+m和抛物线y=x2+bx+c都经过A(1,0),B(3,2).
(1)求m的值和抛物线的解析式;
(2)写出抛物线的顶点坐标;
(3)求不等式x2+bx+c<c+m的解集.(观察图象,直接写出解集)

manfen5.com 满分网 查看答案
为了提高返乡农民工再就业能力,劳动和新社会保障部门对400名返乡农民工进行了某项专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参训人员进行技能测试,测试结果划分成“不合格”“合格”“良好”“优秀”四个等级,并绘制了如图所示的统计表、统计图,请根据统计表、统计图提供的信息,回答下列问题:根据抽样数据绘制的统计表、统计图
等级频数频率
优秀10
良好160.4
合格
不合格0.05
合计1
(1)补全统计表,统计图;
(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为多少?
(3)估计这400名参加培训的人员中,获得“优秀”的总人数大约是多少?

manfen5.com 满分网 查看答案
如图,在平面直角坐标中,直线AB分别与x轴、y轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=manfen5.com 满分网,OB=4,OE=2.
(1)求该反比例函数,直线AB的解析式.
(2)求D点坐标,及△CED的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.