已知:在矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数
(k>0)的图象与AC边交于点E.
(1)求证:△AOE与△BOF的面积相等;
(2)记S=S
△OEF-S
△ECF,求当k为何值时,S有最大值,最大值为多少?
(3)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点F的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图甲,在等腰直角三角形OAB中,∠OAB=90°,B点在第一象限,A点坐标为(1,0).△OCD与△OAB关于y轴对称.
(1)求经过D,O,B三点的抛物线的解析式;
(2)若将△OAB向上平移k(k>0)个单位至△O′A′B(如图乙),则经过D,O,B′三点的抛物线的对称轴在y轴的______.(填“左侧”或“右侧”)
(3)在(2)的条件下,设过D,O,B′三点的抛物线的对称轴为直线x=m.求当k为何值时,|m|=
.
查看答案
为了支援青海省玉树地区人民抗震救灾,四川省某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划用10天完成.
(1)按此计划,该公司平均每天应生产帐篷______顶;
(2)生产2天后,公司又从其他部门抽调了50名工人参加帐篷生产,同时通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?
查看答案
为了解九年级学生每周的课外阅读情况,某校语文组调查了该校九年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图.请根据该频数分布直方图,回答下列问题:
(1)填空:
①该校语文组调查了______名学生的课外阅读量;
②左边第一组的频数=______,频率=______.
(2)求阅读量在14千字及以上的人数.
(3)估计被调查学生这一周的平均阅读量(精确到千字).
查看答案
如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.
(1)求证:△BDE≌△CDF;
(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.
查看答案
(1)计算:
+(-1)
2008-2sin30°;
(2)解不等式组:
.
查看答案