满分5 > 初中数学试题 >

已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0...

已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

manfen5.com 满分网
(1)知道二次函数的解析式经过三点,把三点坐标代入就能求得函数解析式,由解析式写出对称轴. (2)①过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E,要使四边形ABPQ为等腰梯形,只需PQ=AB,算出时间t. ②设对称轴与BC,x轴的交点分别为F,G,根据题意求出PF=QG,MFP≌△MGQ,由S=S四边形ABPQ-S△BPN列出函数关系式,求出最小值. 【解析】 (1)∵二次函数y=ax2+bx+c的图象经过点C(0,-3), ∴c=-3, 将点A(3,0),B(2,-3)代入y=ax2+bx+c 得 解得:a=1,b=-2. ∴y=x2-2x-3, 配方得:y=(x-1)2-4, 所以对称轴直线为:x=1; (2)①由题意可知:BP=OQ=0.1t, ∵点B,点C的纵坐标相等, ∴BC∥OA, 过点B,点P作BD⊥OA,PE⊥OA,垂足分别为D,E, 要使四边形ABPQ为等腰梯形,只需PQ=AB, ∵BD⊥OA,PE⊥OA,垂足分别为D,E, ∴△ABD和△QPE为直角三角形, 当PQ=AB时,又∵BD=PE, ∴Rt△ABD≌Rt△QPE(HL), ∴QE=AD=1. ∵ED=BP=0.1t,DO=BC=2, ∴EO=2-0.1t, 又∵QE=OE-OQ=(2-0.1t)-0.1t=2-0.2t, ∴2-0.2t=1, 解得t=5. 即t=5秒时,四边形ABPQ为等腰梯形. ②设对称轴与BC,x轴的交点分别为F,G. ∵对称轴x=1是线段BC的垂直平分线, ∴BF=CF=OG=1. 又∵BP=OQ, ∴PF=QG. 又∵∠PMF=∠QMG,∠MFP=∠MGQ=90°, ∴△MFP≌△MGQ(AAS), ∴MF=MG, ∴点M为FG的中点, ∴S=S四边形ABPQ-S△BPN=S四边形ABFG-S△BPN. 由S四边形ABFG==. , ∴S=. 又∵BC=2,OA=3, ∴点P运动到点C时停止运动,需要20秒. ∴0<t≤20. ∴当t=20秒时,面积S有最小值3.
复制答案
考点分析:
相关试题推荐
如图:正方形ABCD的边长为6cm,E是AD的中点,点P在AB上,且∠ECP=45°.求PE的长及△PEC的面积.

manfen5.com 满分网 查看答案
已知一次函数y=2x+b(k≠0)和反比例函数manfen5.com 满分网的图象交于点A(1,1)
(1)求两个函数的解析式;
(2)若点B是x轴上一点,且△AOB是直角三角形,求B点的坐标.
查看答案
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

manfen5.com 满分网 查看答案
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
(1)该年级报名参加丙组的人数为______
(2)该年级报名参加本次活动的总人数______,并补全频数分布直方图;
(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.