满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MB...

manfen5.com 满分网如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.
(1)需证△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形; (2)可证△BPM∽△CQP,,PC=x,MQ=y,BP=4-x,QC=4-y,,即可得出y=-x+4; (3)应考虑四边形ABPM和四边形MBPD均为平行四边形,四边形MPCD和四边形APCM均为平行四边形时的情况;由(2)中的函数关系,可得当y取最小值时,x=PC=2,P是BC的中点,MP⊥BC,而∠MPQ=60°,∠CPQ=30°,∠PQC=90°. (1)证明:∵△MBC是等边三角形, ∴MB=MC,∠MBC=∠MCB=60°.(1分) ∵M是AD中点, ∴AM=MD. ∵AD∥BC, ∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°. ∴△AMB≌△DMC.(2分) ∴AB=DC. ∴梯形ABCD是等腰梯形.(3分) (2)【解析】 在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°, ∴∠BMP+∠BPM=∠BPM+∠QPC=120°. ∴∠BMP=∠QPC.(4分) ∴△BPM∽△CQP. ∴.(5分) ∵PC=x,MQ=y, ∴BP=4-x,QC=4-y.(6分) ∴. ∴y=-x+4.(7分) (3)【解析】 ①当BP=1时,则有BPAM,BPMD, 则四边形ABPM为平行四边形, ∴MQ=y=×32-3+4=.(8分) 当BP=3时,则有PCAM,PCMD, 则四边形MPCD为平行四边形, ∴MQ=y=×12-1+4=.(9分) ∴当BP=1,MQ=或BP=3,MQ=时, 以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.(10分) 故符合条件的平行四边形的个数有4个. ②△PQC为直角三角形.(11分) ∵y=(x-2)2+3, ∴当y取最小值时,x=PC=2.(12分) ∴P是BC的中点,MP⊥BC,而∠MPQ=60°, ∴∠CPQ=30°, ∴∠PQC=90°. ∴△PQC是直角三角形.(13分)
复制答案
考点分析:
相关试题推荐
如图,已知△ABC的面积为16,BC=8.现将△ABC沿直线BC向右平移a个单位到△DEF的位置.
(1)当a=4时,求△ABC所扫过的面积;
(2)连接AE、AD,设AB=5,当△ADE是以DE为一腰的等腰三角形时,求a的值.

manfen5.com 满分网 查看答案
已知二次函数y=ax2+bx+c的图象经过点A(3,0),B(2,-3),C(0,-3).
(1)求此函数的解析式及图象的对称轴;
(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.
①当t为何值时,四边形ABPQ为等腰梯形;
②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.

manfen5.com 满分网 查看答案
如图:正方形ABCD的边长为6cm,E是AD的中点,点P在AB上,且∠ECP=45°.求PE的长及△PEC的面积.

manfen5.com 满分网 查看答案
已知一次函数y=2x+b(k≠0)和反比例函数manfen5.com 满分网的图象交于点A(1,1)
(1)求两个函数的解析式;
(2)若点B是x轴上一点,且△AOB是直角三角形,求B点的坐标.
查看答案
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.