如图,半圆O的直径AB=12cm,射线BM从与线段AB重合的位置起,以每秒6°的旋转速度绕B点按顺时针方向旋转至BP的位置,BP交半圆于E,设旋转时间为ts(0<t<15),
(1)求E点在圆弧上的运动速度(即每秒走过的弧长),结果保留π.
(2)设点C始终为
的中点,过C作CD⊥AB于D,AE交CD、CB分别于G、F,过F作FN∥CD,过C作圆的切线交FN于N.
求证:①CN∥AE;
②四边形CGFN为菱形;
③是否存在这样的t值,使BE
2=CF•CB?若存在,求t值;若不存在,说明理由.
考点分析:
相关试题推荐
某工厂生产A、B两种型号的帐篷,已知A型帐篷40顶和B型帐篷20顶共重2180kg,A型帐篷10顶和B型帐篷60顶共重2580kg,且每种型号的帐篷都是由防雨布和钢材两种材料制成的.
(1)求A、B两种型号的帐篷每顶各重多少kg,并根据求得的结果把下表中的空格填上.
| 防雨布 | 钢材 |
每顶A型帐篷所需材料 | 20kg | |
每顶B型帐篷所需材料 | | 12kg |
(2)汶川发生特大地震灾害后,该工厂立即用现有的45吨防雨布和28.5吨钢材突击赶制上述两种规格的帐篷2000顶,送往灾区供灾民居住.若设生产A型帐篷x顶
①求x的取值范围,并说明共有多少种生产方案.
②若每顶A型帐篷可解决10个灾民的居住问题,每顶B型帐篷可解决12个灾民的居住问题,问如何安排生产可最大限度地解决灾民居住问题,最多可解决多少个灾民的居住问题.
查看答案
解答下列问题:
(1)在一个不透明的口袋中有10个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了200次,其中有50次摸到了红球,那么估计口袋中有白球多少个?
(2)请思考并作答:
在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用a、b、c 等字母表示).
查看答案
“灾难无情人有情”,四川汶川发生大地震后,一批武警官兵奉命营救小山两侧A、B两地的被困人员,为了圆满完成空降任务,需知道小山高度及A、B两地的距离.已知当飞机飞至高空C处时,发现飞机与山顶P及村庄B在同一条直线上,且点A、B、C、P在同一平面内,并测得A、B两地的俯角分别为75°和30°,飞机离A地的距离AC=1400米,又知在A处观测山顶P的仰角为45°,求AB两地的距离及小山的高 (结果保留根号).
查看答案
如图1,在等腰△ABC中,AB=AC=a,P为底边BC上任一点,过P作PE∥AC交AB于E,PF∥AB交AC于F,
(1)求证:PE+PF=a;
(2)若将上述等腰△ABC改为等腰梯形ABCD(如图2),其中AD∥BC,AB=CD,AC与BD交于点O,P为BC边上任一点,PF∥BD交DC于F,PE∥AC交AB于E,设梯形的对角线长为a,则(1)中的结论是否还成立,并说明理由.
查看答案
体育中考前,某中学对全校初三男生进行了立定跳远项目测试,并从参加测试的500名男生中随机抽取了部分男生的测试成绩(单位:米,精确到0.01米)作为样本进行分析,绘制了如图所示的频数分布直方图(每组含最低值,不含最高值).已知图中从左到右每个小长方形的高的比为2:4:6:5:3,其中1.80~2.00这一小组的频数为8,请根据有关信息解答下列问题:
(1)填空:这次调查的样本容量为______,2.40~2.60这一小组的频率为______;
(2)请指出样本成绩的中位数落在哪一小组内;
(3)样本中男生立定跳远的人均成绩不低于多少米?
(4)若成绩达2.20米及2.20米以上的为优秀,请估计该校初三男生立定跳远成绩达优秀的约有多少人?
查看答案