如图1,已知直线y=-
x与抛物线y=-
x
2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
考点分析:
相关试题推荐
已知:如图,⊙O和⊙O
1内切于A,直线OO
1交⊙O于另一点B、交⊙O
1于另一点F,过B点作⊙O
1的切线,切点为D,交⊙O于C点,DE⊥AB,垂足为E.
求证:(1)CD=DE;
(2)若将两圆内切改为外切,其它条件不变,(1)中的结论是否成立?请证明你的结论.
(3)在(1)条件下,若BD=4,BF=2,连AC,求DE与AC的长.
查看答案
“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答下列问题:
物资种类 | 食品 | 药品 | 生活用品 |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨所需运费(元/吨) | 120 | 160 | 100 |
(1)设装运食品的车辆数为x,装运药品的车辆数为y.求y与x的函数关系式;
(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.
查看答案
某班级要举办一场毕业联欢会,为了鼓励人人参与,规定每个同学都需要分别转动下列甲乙两个转盘(每个转盘都被均匀等分),若转盘停止后所指数字之和为7,则这个同学就要表演唱歌节目;若数字之和为9,则该同学就要表演讲故事节目;若数字之和为其他数,则分别对应表演其他节目.请用列表法(或树状图)分别求出这个同学表演唱歌节目的概率和讲故事节目的概率.
查看答案
已知:如图,在山脚的C处测得山顶A的仰角为45°,沿着坡度为30°的斜坡前进400米到D处(即∠DCB=30°,CD=400米),测得A的仰角为60°,求山的高度AB.
查看答案