满分5 > 初中数学试题 >

已知⊙O1半径为3cm,⊙O2的半径为7cm,若⊙O1和⊙O2的公共点不超过1个...

已知⊙O1半径为3cm,⊙O2的半径为7cm,若⊙O1和⊙O2的公共点不超过1个,则两圆的圆心距不可能为( )
A.0cm
B.4cm
C.8cm
D.12cm
因为⊙O1和⊙O2的公共点不超过1个,所以两圆的位置关系不可能是相交,所以4<d<10范围内的值是不可能的. 【解析】 ∵⊙O1和⊙O2的公共点不超过1个, ∴两圆不可能相交, ∴圆心距不可能在4<d<10范围, ∴将四选项与圆心距范围比较,则C不可能. 故选C.
复制答案
考点分析:
相关试题推荐
如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数manfen5.com 满分网自变量x的取值范围是( )
A.x>0
B.x<0
C.x=0
D.x≠0
查看答案
已知抛物线y=ax2+bx-4的图象与x相交于A、B(点A在B的左边),与y轴相交于C,抛物线过点A(-1,0)且OB=OC.P是线段BC上的一个动点,过P作直线PE⊥x轴于E,交抛物线于F.
(1)求抛物线的解析式;
(2)若△BPE与△BPF的两面积之比为2:3时,求E点的坐标;
(3)设OE=t,△CPE的面积为S,试求出S与t的函数关系式;当t为何值时,S有最大值,并求出最大值;
(4)在(3)中,当S取得最大值时,在抛物线上求点Q,使得△QEC是以EC为底边的等腰三角形,求Q的坐标.

manfen5.com 满分网 查看答案
如图1是脚踩式家用垃圾桶,图2是它的内部结构示意图.EF是一根固定的圆管,轴MN两头是可以滑动的圆珠,且始终在圆管内上下滑动.点A是横杆BN转动的支点.当横杆BG踩下时,N移动到N′.已知点B、A、N、G的水平距离如图所示,支点的高度为3cm.
(1)当横杆踩下至B′时,求N上升的高度;
(2)垃圾桶设计要求是:垃圾桶盖必须绕O点旋转75°.试问此时的制作是否符合设计要求?请说明理由.
(3)在制作的过程中,可以移动支点A(无论A点如何移,踩下横杆BG时,B点始终落在B′点),试问:如何移动支点(向左或右移动,移动多少距离)才能符合设计要求?请说明理由.(本小题结果精确到0.01cm)

manfen5.com 满分网 manfen5.com 满分网 查看答案
如图,已知等腰Rt△AOB,其中∠AOB=90°,OA=OB=2,E、F为斜边AB上的两个动点(E比F更靠近A),满足∠EOF=45°,
(1)求证:△AOF∽△BEO;
(2)求AF•BE的值;
(3)作EM⊥OA于M,FN⊥OB于N,求OM•ON的值;
(4)求线段EF长的最小值.(提示:必要时可以参考以下公式:当x>0,y>0时,manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.