考点分析:
相关试题推荐
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x
2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案
天羽服装厂生产M、N型两种服装,受资金及规模限制,每天最多只能用A种面料68米和B种面料62米生产M、N型两种服装共80套.已知M、N型服装每套所需面料和成本如下表,设每天生产M型服装x套.
| A | B | 成本 |
M型 | 1.1m | 0.4m | 100元 |
N型 | 0.6m | 0.9m | 80元 |
(1)若要每天成本不高于7200元,则该厂每天生产M型服装最多多少套,最少多少套?
(2)经市场调查,生产的M、N型服装有两种销售方案(假设每天生产的服装都能全部售出).
方案Ⅰ:两种型号服装都在本市销售,M型180元/件、N型120元/件;
方案Ⅱ:N型服装在本市销售,120元/件,M型服装批发给H市服装商,其每件的批发价y(元)与批量x(件)之间的关系如图所示.
如果你是厂长,应采用哪种销售方案可使每天获利最大,最大利润是多少?并确定相应的生产方案.
查看答案
如图,在平面直角坐标系xOy中,以点A(3,0)为圆心的圆与x轴交于原点O和点B,直线l与x轴、y轴分别交于点C(-2,0)、D(0,3).
(1)求出直线l的解析式;
(2)若直线l绕点C顺时针旋转,设旋转后的直线与y轴交于点E(0,b),且0<b<3,在旋转的过程中,直线CE与⊙A有几种位置关系?试求出每种位置关系时,b的取值范围.
查看答案
如图1,OP是∠MON的平分线,请你在该图形上利用尺规作出一对以OP所在直线为对称轴的全等三角形.
请你参考这个作全等三角形的方法,解答下列问题:
如图2,在△ABC中,AD,CE分别是∠BAC,∠BCA的平分线,且AE=CD.
证明:BA=BC.
查看答案
甲、乙两位汽车发烧友在探讨郊游活动:已知甲、乙两辆汽车同时、同方向从同一地点A出发行驶,
(1)若甲车的速度是乙车的1.5倍,甲车走了75千米后立即返回与乙车相遇,相遇时乙车走了1小时,求甲、乙两车的速度.
(2)假设甲、乙每辆车最多只能带60升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发地A.请你设计一种方案使甲车尽可能地远离出发地A,求乙车应借给甲车多少升汽油,并求出甲车一共行驶了多少千米?
查看答案