满分5 > 初中数学试题 >

已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN...

已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
根据已知可以利用SAS证明△ABE≌△CBF,从而得出对应角相等,对应边相等,从而得出∠ABE=∠CBF=30°,△BEF为等边三角形,利用等边三角形的性质及边与边之间的关系,即可推出AE+CF=EF. 同理图2可证明是成立的,图3不成立. 【解析】 ∵AB⊥AD,BC⊥CD,AB=BC,AE=CF, 在△ABE和△CBF中, , ∴△ABE≌△CBF(SAS); ∴∠ABE=∠CBF,BE=BF; ∵∠ABC=120°,∠MBN=60°, ∴∠ABE=∠CBF=30°, ∴AE=BE,CF=BF; ∵∠MBN=60°,BE=BF, ∴△BEF为等边三角形; ∴AE+CF=BE+BF=BE=EF; 图2成立,图3不成立. 证明图2. 延长DC至点K,使CK=AE,连接BK, 在△BAE和△BCK中, 则△BAE≌△BCK, ∴BE=BK,∠ABE=∠KBC, ∵∠FBE=60°,∠ABC=120°, ∴∠FBC+∠ABE=60°, ∴∠FBC+∠KBC=60°, ∴∠KBF=∠FBE=60°, 在△KBF和△EBF中, ∴△KBF≌△EBF, ∴KF=EF, ∴KC+CF=EF, 即AE+CF=EF. 图3不成立, AE、CF、EF的关系是AE-CF=EF.
复制答案
考点分析:
相关试题推荐
将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?
查看答案
台湾“华航”客机失事后,祖国大陆海上搜救中心立即通知位于A、B两处的上海救捞人局所属专业救助轮“华意”轮、“沪救12”轮前往出事地点协助搜索.接到通知后,“华意”轮测得出事地点C在A的南偏东60°,“沪救12”轮测得出事地点C在B的南偏东30度.已知B在A的正东方向,且相距100浬,分别求出两艘船到达出事地点C的距离.

manfen5.com 满分网 查看答案
已知a,b是方程x2+2x-1=0的两个根,求代数式manfen5.com 满分网的值.
查看答案
已知抛物线y=x2-2x-3与x轴的右交点为A,与y轴的交点为B,求经过A、B两点的直线的解析式.
查看答案
为了解中学生的视力情况,某市有关部门采用抽样调查的方法从全市10万名中学生中抽查了部分学生的视力,分成以下四类进行统计:
A.视力在4.2及以下;B.视力在4.3~4.5之间;C.视力在4.6~4.9之间;D.视力在5.0及以上
图一、二是根据调查结果绘制的两幅不完整的统计图,请根据统计图提供的信息,解答下列问题:
(1)这次抽查中,一共抽查了______名中学生;
(2)“类型D”在扇形图中所占的圆心角是______度;
(3)在统计图一中将“类型B”的部分补充完整;
(4)视力在5.0以下(不含5.0)均为不良,请估计全市视力不良的中学生人数.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.