满分5 > 初中数学试题 >

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿C...

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

manfen5.com 满分网
(1)可通过构建直角三角形来求【解析】 过A作AE⊥CD,垂足为E.那么可在直角三角形AED中根据两底的差和∠D的度数来求出AD的长. (也可通过作辅助线将梯形分成平行四边形和等边三角形两部分来求解.) (2)可通过求△PDQ的面积与x的函数关系式来得出△PDQ的最大值.由于P、Q速度相同,因此CP=QD=x,那么可用x表示出PD,而△PQD中,PD边上的高=QD•sin60°,由此可根据三角形的面积公式求出S△PQD与x之间的函数关系式,可根据函数的性质求出S的最大值以及对应的x的值. (3)假设存在这样的M点,那么DM就是PQ的垂直平分线,可得出QD=PD、PM=AM,然后证PM=PD即可.根据(2)中得出PD、DQ的表达式,可求出x=,即P是CD的中点,不难得出△QPD为等边三角形,因此∠QPD=∠C=60°,因此PQ∥CM,即∠DMC=90°,在直角三角形DMC中,P为斜边CD的中点,因此PM=PD,即可得出四边形PDQM是菱形.那么此时根据BM=BC-CM可求出BM的长. 【解析】 (1)解法一:如图1 过A作AE⊥CD,垂足为E. 依题意,DE==. 在Rt△ADE中,AD==. 解法二:如图2 过点A作AE∥BC交CD于点E,则CE=AB=4. ∠AED=∠C=60度. 又∵∠D=∠C=60°, ∴△AED是等边三角形. ∴AD=DE=9-4=5. (2)如图1 ∵CP=x,h为PD边上的高,依题意, △PDQ的面积S可表示为: S=PD•h=(9-x)•x•sin60° =(9x-x2)=-(x-)2+. 由题意知0≤x≤5. 当x=时(满足0≤x≤5),S最大值=. (3)如图4 存在满足条件的点M,则PD必须等于DQ. 于是9-x=x,x=. 此时,点P、Q的位置如图4所示,△PDQ恰为等边三角形. 过点D作DO⊥PQ于点O,延长DO交BC于点M,连接PM、QM,则DM垂直平分PQ, ∴MP=MQ. 易知∠1=∠C. ∴PQ∥BC. 又∵DO⊥PQ, ∴MC⊥MD ∴MP=CD=PD 即MP=PD=DQ=QM ∴四边形PDQM是菱形 所以存在满足条件的点M,且BM=BC-MC=5-=.
复制答案
考点分析:
相关试题推荐
已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;
当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.
manfen5.com 满分网
查看答案
将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?
查看答案
台湾“华航”客机失事后,祖国大陆海上搜救中心立即通知位于A、B两处的上海救捞人局所属专业救助轮“华意”轮、“沪救12”轮前往出事地点协助搜索.接到通知后,“华意”轮测得出事地点C在A的南偏东60°,“沪救12”轮测得出事地点C在B的南偏东30度.已知B在A的正东方向,且相距100浬,分别求出两艘船到达出事地点C的距离.

manfen5.com 满分网 查看答案
已知a,b是方程x2+2x-1=0的两个根,求代数式manfen5.com 满分网的值.
查看答案
已知抛物线y=x2-2x-3与x轴的右交点为A,与y轴的交点为B,求经过A、B两点的直线的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.