已知:在平面直角坐标系中,抛物线y=ax
2-2x+3(a≠0)交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-1(如图1).
(1)求该抛物线的解析式及顶点D的坐标;
(2)P是y轴上一点,若△PBC与△BOC相似,求点P的坐标;
(3)连接AD、BD(如图2),点M是AD上的一个动点,过点M作MN∥AB交BD于点N,把△DMN沿MN折叠得△D′MN,设△D′MN与△ABD的重叠部分的面积为S,请探究:S的最大值.
考点分析:
相关试题推荐
问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为______;当推出∠DAC=15°时,可进一步推出∠DBC的度数为______;可得到∠DBC与∠ABC度数的比值为______;
(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.
查看答案
如图,在平面直角坐标系中,正比例函数y=kx(k≠0)的图象与反比例函数y=
的图象分别交于第一、三象限的点B、D,已知点A(-m,0)、C(m,0).连接AB、BC、CD、DA.
(1)四边形ABCD的形状一定是______.
(2)若m=2且四边形ABCD是矩形,求点B的坐标.
(3)试探究:当直线y=kx绕原点O旋转时,四边形ABCD能不能是菱形?若能,请直接写出A、B、C、D的坐标;若不能,请说明理由.
查看答案
为了鼓励节能降耗,某市规定如下用电收费标准:每户每月的用电量不超过120度时,电价为a元/度;超过120度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户五月份用电115度,交电费69元,六月份用电140度,交电费94元.
(1)求a,b的值;
(2)设该用户每月用电量为x(度),应付电费为y(元);
①分别求出0≤x≤120和x>120时,y与x之间的函数关系式;
②若该用户计划七月份所付电费不超过83元,问该用户七月份最多可用电多少度?
查看答案
如图,AB是⊙O的直径,C是
的中点,CE⊥AB于点E,BD交CE于点F.
(1)求证:CF=BF;
(2)若CD﹦6,sin∠D=
,求⊙O的半径及CE的长.
查看答案
已知函数y=x-3,
(1)完成下列表格:
(2)以表中的数对(x,y)作为点的坐标可得函数图象上的6个点,在这6个点中随机取两个点P(x
1,y
1)、Q(x
2,y
2),求P、Q两点在同一反比例函数图象上的概率.
查看答案