如图①,点A是直线y=kx(k>0,且k为常数)上一动点,以A为顶点的抛物线y=(x-h)
2+m交直线y=kx于另一点E,交y轴于点F,抛物线的对称轴交x轴于点B,交直线EF于点C(点A、E、F两两不重合).
(Ⅰ)写出h与m之间的关系(用含k的代数式表示);
(Ⅱ)当点A运动到使EF与x轴平行时(如图②),求
的值;
(Ⅲ)当点A运动到使点F的位置最低时(如图③),求
的值.
查看答案
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(Ⅰ)直接写出点E、F的坐标;
(Ⅱ)若M为x轴上的动点,N为y轴上的动点,当四边形MNFE的周长最小时,求出点M、N的坐标,并求出周长的最小值.
查看答案