已知:矩形OABC中,A(6,0),B(6,4),F为AB边的中点,直线EF交边BC于E,且sin∠BEF=
,P为线段EF上一动点,PM⊥OA于M,PN⊥OC于N.
(1)求直线EF的函数解析式并注明自变量取值范围;
(2)求矩形ONPM的面积的最大值及此时点P的坐标;
(3)矩形ONPM、矩形OABC有可能相似吗?若相似,求出此时点P的坐标;若不相似,请简要说明理由.
考点分析:
相关试题推荐
如图,△ABC中,∠C=30°,AC=4,BC=
,D为BC的中点,以AC为直径作⊙O.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AB于E,求证:DE与⊙O相切.
查看答案
某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.
(1)设该经营户将每千克小型西瓜降价x元,请用代数式表示每天的销售量;
(2)若该经营户每天的房租等固定成本共24元,该经营户想要每天盈利200元,应将每千克小型西瓜的售价降低多少元?
查看答案
已知,如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.
(1)求证:四边形AEFG是平行四边形;
(2)若四边形AEFG是矩形,请探索∠EFB与∠FGC的数量关系,并证明你的结论.
查看答案
已知抛物线y=ax
2+c与x轴交于A、B两点,与y轴交于C点,直线
经过点B及OC中点E.求抛物线的解析式.
查看答案
小张对学校部分同学的业余兴趣爱好进行了一次随机调查,根据采集到的数据,绘制了下面的图1和图2.请你根据图中提供的信息,解答下列问题:
(1)在图1中,将“书画”部分的图形补充完整;
(2)在图2中,求出“球类”部分所对应的圆心角的度数,并求出爱好“音乐”、“书画”的人数占所调查人数的百分比;
(3)若全校大约2500名学生,你估计可能有多少同学爱好音乐?
查看答案