满分5 > 初中数学试题 >

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求A...

如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

manfen5.com 满分网
(1):先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形; (2)利用勾股定理,建立关于x的方程模型(x-2)2+(x-3)2=52,求出AD=x=6. (1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF.(1分) ∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°. ∴∠EAF=90°.(3分) 又∵AD⊥BC, ∴∠E=∠ADB=90°,∠F=∠ADC=90°.(4分) 又∵AE=AD,AF=AD, ∴AE=AF.(5分) ∴四边形AEGF是正方形.(6分) (2)【解析】 设AD=x,则AE=EG=GF=x,(7分) ∵BD=2,DC=3, ∴BE=2,CF=3. ∴BG=x-2,CG=x-3.(9分) 在Rt△BGC中,BG2+CG2=BC2 ∴(x-2)2+(x-3)2=52(11分), ∴(x-2)2+(x-3)2=52,化简得,x2-5x-6=0. 解得x1=6,x2=-1(舍), 所以AD=x=6(12分).
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD中,AB=5,AD=3.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.
(1)当E是CD的中点时:
①tan∠EAB的值为______
②证明:FG是⊙O的切线;
(2)试探究:BE能否与⊙O相切?若能,求出此时DE的长;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,抛物线y=-manfen5.com 满分网x2-x+2的顶点为A,与y轴交于点B.
(1)求点A、点B的坐标;
(2)若点P是x轴上任意一点,求证:PA-PB≤AB;
(3)当PA-PB最大时,求点P的坐标.

manfen5.com 满分网 查看答案
九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.

manfen5.com 满分网 查看答案
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.
(1)D型号种子的粒数是______
(2)请你将图2的统计图补充完整;
(3)通过计算说明,应选哪一个型号的种子进行推广;
(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.manfen5.com 满分网
查看答案
如图,直线l1的解析表达式为y=-3x+3,l1与x轴交于点D,直线l2经过点A,B,且直线l1,l2交于点C.
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)若反比例函数manfen5.com 满分网经过点C,试求实数k的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.