满分5 > 初中数学试题 >

已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+b...

已知:直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.
(1)求A、C两点的坐标;
(2)求出抛物线的函数关系式;
(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;
(4)若E为⊙B劣弧OC上一动点,连接AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3?若存在,试求出点M的坐标;若不存在,试说明理由.

manfen5.com 满分网
(1)根据过A、C两点的直线的解析式即可求出A,C的坐标. (2)根据A,O的坐标即可得出抛物线的对称轴的解析式,然后将A点坐标代入抛物线中,联立上述两式即可求出抛物线的解析式. (3)直线与圆的位置关系无非是相切与否,可连接AD,证AD是否与AC垂直即可.由于B,D关于x轴对称,那么可得出∠CAO=∠DAO=45°,因此可求出∠DAB=90°,即DA⊥AC,因此AC与圆D相切. (4)根据圆周角定理可得出∠AEO=45°,那么∠MOA=30°,即M点的纵坐标的绝对值和横坐标的绝对值的比为tan30°,由此可得出x,y的比例关系式,然后联立抛物线的解析式即可求出M点的坐标.(要注意的是本题要分点M在x轴上方还是下方两种情况进行求解) 【解析】 (1)A(-6,0),C(0,6) (2)∵抛物线y=ax2+bx(a<0)经过A(-6,0),0(0,0). ∴对称轴x=-=-3,b=6a…① 当x=-3时,代入y=x+6得y=-3+6=3, ∴B点坐标为(-3,3). ∵点B在抛物线y=ax2+bx上, ∴3=9a-3b…② 结合①②解得a=-,b=-2, ∴该抛物线的函数关系式为y=-x2-2x. (3)相切 理由:连接AD, ∵AO=OC ∴∠ACO=∠CAO=45° ∵⊙B与⊙D关于x轴对称 ∴∠BAO=∠DAO=45° ∴∠BAD=90° 又∵AD是⊙D的半径, ∴AC与⊙D相切. ∵抛物线的函数关系式为y=-x2-2x, ∴函数顶点坐标为(-3,3), 由于D、B关于x轴对称, 则BD=3×2=6. (4)存在这样的点M. 设M点的坐标为(x,y) ∵∠AEO=∠ACO=45° 而∠MOA:∠AEO=2:3 ∴∠MOA=30° 当点M在x轴上方时,=tan30°=, ∴y=-x. ∵点M在抛物线y=-x2-2x上, ∴-x=-x2-2x, 解得x=-6+,x=0(不合题意,舍去) ∴M(-6+,-1+2). 当点M在x轴下方时,=tan30°=, ∴y=x, ∵点M在抛物线y=-x2-2x上. ∴x=-x2-2x, 解得x=-6-,x=0(不合题意,舍去). ∴M(-6-,-1-2), ∴M的坐标为(-6+,-1+2)或(-6-,-1-2).
复制答案
考点分析:
相关试题推荐
“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.
(1)若代销点采取降低促销的方式,试建立每吨的销售利润y(元)与每吨降低x(元)之间的函数关系式.
(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.
查看答案
绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
查看答案
2008年,举世瞩目的第29届奥运盛会将在北京举行.奥运五环,环环相扣,象征着全世界人民的大团结.五环图中五个圆环均相等,其中上排三个、下排两个,且上排的三个圆心在同一直线上;五环图是一个轴对称图形.
(1)请用尺规作图,在图1中补全奥运五环图,心怀奥运;(不写作法,保留作图痕迹)
(2)五环图中五个圆心围一个等腰梯形.如图2,在等腰梯形ABCD中,AD∥BC.假设BC=4,AD=8,∠A=45°,求梯形的面积.
manfen5.com 满分网
查看答案
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
复习日记卡片
内容:一元二次方程解法归纳                                时间:2007年6月×日
举例:求一元二次方程x2-x-1=0的两个解
方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解
解方程:x2-x-1=0.
【解析】

方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y=______的图象与x轴交点的横坐标,即x1,x2就是方程的解.
manfen5.com 满分网

方法三:利用两个函数图象的交点求解
(1)把方程x2-x-1=0的解看成是一个二次函数y=______的图象与一个一次函数y=______图象交点的横坐标;
(2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解.

manfen5.com 满分网

查看答案
某校初三(1)班50名学生参加1分钟跳绳体育考试.1分钟跳绳次数与频数经统计后绘制出下面的频数分布表(60~70表示为大于等于60并且小于70)和扇形统计图.
 等级 分数段 1分钟跳绳次数段 频数(人数)
 A 120254~300 
 110~120 224~254 3
 B100~110 194~224 9
 90~100 164~194 m
 C 80~90 148~164 12
70~80 132~148 n
 D 60~70 116~132 2
 0~600~116 0
(1)求m、n的值;
(2)求该班1分钟跳绳成绩在80分以上(含80分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.