满分5 > 初中数学试题 >

在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=...

在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?
manfen5.com 满分网
(1)可根据PE∥DC,来得出关于AE,AD,AP,AC的比例关系,AD可根据勾股定理求出,那么就能用x表示出AE的长,进而可表示出DE的长; (2)求三角形EDQ的面积可以QD为底边,以PC为高来求,QD=BD-BQ,而BQ可根据Q的速度用时间表示出来,那么也就能用x表示出QD,而PC就是AC-AP,有了底和高,就可以根据三角形的面积公式得出关于x,y的函数关系式; (3)因为∠ADB是钝角,因此要想使三角形EDQ是直角三角形,那么Q就必须在CD上,可分两种情况进行讨论: ①当∠EQD=90°时,四边形EPCQ是个矩形,那么EQ=PC,DQ=BQ-BD,根据EQ∥AC可得出关于EQ,AC,DQ,DC的比例关系从而求出x的值. ②当∠DEQ=90°时,可用PC和∠DAC的正弦值来表示出EQ,然后用相似三角形EQD和ABC,得出关于EQ,AC,DQ,AD的比例关系,从而求出x的值. 【解析】 (1)在Rt△ADC中,AC=4,CD=3, ∴AD=5, ∵EP∥DC, ∴△AEP∽△ADC ∴=, 即=, ∴EA=x, DE=5-x; (2)∵BC=5,CD=3, ∴BD=2, 当点Q在BD上运动x秒后,DQ=2-1.25x, 则y=×DQ×CP=(4-x)(2-1.25x)=x2-x+4, 即y与x的函数解析式为:y=x2-x+4, 其中自变量的取值范围是:0<x<1.6; (3)分两种情况讨论: ①当∠EQD=90°时,显然有EQ=PC=4-x, 又∵EQ∥AC, ∴△EDQ∽△ADC ∴=, 即=, 解得x=2.5 ②当∠QED=90°时, ∵∠CDA=∠EDQ,∠QED=∠C=90°, ∴△EDQ∽△CDA, ∴=,即=, 解得x=3.1. 综上所述,当x为2.5秒或3.1秒时,△EDQ为直角三角形.
复制答案
考点分析:
相关试题推荐
如图,已知二次函数y=0.5x2+mx+n的图象过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求这个抛物线的解析式;
(2)求线段PC的长;
(3)设D为线段OC上的一点,且∠DPC=∠BAC,求点D的坐标.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2-2x-a=0.
(1)如果此方程有两个不相等的实数根,求a的取值范围;
(2)如果此方程的两个实数根为x1,x2,且满足manfen5.com 满分网,求a的值.
查看答案
已知:如图,⊙O的直径AB与弦CD相交于E,manfen5.com 满分网=manfen5.com 满分网,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=manfen5.com 满分网,求线段AD、CD的长.

manfen5.com 满分网 查看答案
如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;
(2)不解关于x,y的方程组manfen5.com 满分网,请你直接写出它的解;
(3)直线l3:y=nx+m是否也经过点P?请说明理由.

manfen5.com 满分网 查看答案
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):
求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?
(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围;
(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.