满分5 > 初中数学试题 >

如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过...

如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EM∥BD,交BA的延长线于点M.
(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.

manfen5.com 满分网
(1)首先连接OE,由弦DE垂直平分半径OA,根据垂径定理可求得OC与OE的关系,求得CE的长,然后根据直角三角形的性质,求得∠OEC=30°,根据三角函数的性质,则可求得⊙O的半径; (2)由垂径定理,可得,根据在等圆或同圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,即可求得∠B的度数,即可求得∠EDB的度数,又由EM∥BD,可求得∠MED的度数,继而求得∠MEO=90°,即可证得EM是⊙O的切线; (3)由∠APD=45°,根据在等圆或同圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,即可求得∠EOF的度数,然后根据S阴影=S扇形EOF-S△EOF,即可求得答案. (1)【解析】 连接OE. ∵DE垂直平分半径OA, ∴OC=OA ∵OA=OE, ∴OC=OE,CE=DE=, ∴∠OEC=30°, ∴OE==; (2)证明:由(1)知:∠AOE=60°,, ∴∠B=∠AOE=30°, ∴∠BDE=60° ∵BD∥ME, ∴∠MED=∠BDE=60°, ∴∠MEO=∠MED+∠OEC=60°+30°=90°, ∴OE⊥EM, ∴EM是⊙O的切线; (3)【解析】 连接OF. ∵∠DPA=45°, ∵∠DCB=90°, ∴∠CDP=45°, ∴∠EOF=2∠EDF=90°, ∴S阴影=S扇形EOF-S△EOF==π-.
复制答案
考点分析:
相关试题推荐
莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.
(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?
(2)在(1)的条件下,若批发每吨获得利润为2000元,零售每吨获得利润为2200元,计算实际获得的总利润.
查看答案
已知矩形纸片ABCD中,AB=2,BC=3.
操作:将矩形纸片沿EF折叠,使点B落在边CD上.
探究:
(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等给出证明,如果不全等请说明理由;
(2)如图2,若点B与CD的中点重合,求△FCB1和△B1DG的周长之比.
manfen5.com 满分网
查看答案
莱芜某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据如图,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).

manfen5.com 满分网 查看答案
为迎接建党90周年,我市某中学拟组织学生开展唱红歌比赛活动.为此,校团委对初四一班会唱红歌的学生进行了统计(甲:会唱1首,乙:会唱2首,丙:会唱3首,丁:会唱4首以上),并绘制了如下两幅不完整的统计图.请你根据图中提供的信息解答以下问题:
(1)在条形统计图中,将会唱4首以上的部分补充完整;
(2)求该班会唱1首的学生人数占全班人数的百分比;
(3)在扇形统计图中,计算出会唱3首的部分所对应的圆心角的度数;
(4)若该校初四共有350人,请你估计会唱3首红歌的学生约有多少人?
manfen5.com 满分网
查看答案
解不等式组:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.