如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D、E,过点D作DF⊥AC于点F,
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC于点H,若等边△ABC的边长为8,求AF,FH的长.
考点分析:
相关试题推荐
先阅读,再解答:
我们在判断点(-7,20)是否在直线y=2x+6上时,常用的方法:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判断出点(-7,20)不在直线y=2x+6上.
已知:点A(1,2),B(3,4),C(-1,6)
(1)点C是否在经过点A、B两点的直线上,试说明理由.
(2)A、B、C三点是否可以确定一个圆,试说明理由.
查看答案
如图所示,在Rt△ABC中,∠A=60°,点E、F分别在AB、AC上,沿EF对折,使A落在BC上的D处,且FD⊥BC.
(1)确定点E在AB上和点F在AC上的位置;
(2)求证:四边形AEDF为菱形.
查看答案
如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m
2,求道路的宽.
(部分参考数据:32
2=1024,52
2=2704,48
2=2304)
查看答案
如图,在一张圆桌(圆心为点O)的正上方点A处吊着一盏照明灯,实践证明:桌子边沿处的光的亮度与灯距离桌面的高度AO有关,且当sin∠ABO=
时,桌子边沿处点B的光的亮度最大,设OB=60cm,求此时灯距离桌面的高度OA(结果精确到1cm).
(参考数据:
≈1.414;
≈1.732;
≈2.236)
查看答案
振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
查看答案