满分5 > 初中数学试题 >

如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,...

如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3
(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)
(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;
(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;
(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.
manfen5.com 满分网
利用直角△ABC的边长就可以表示出S1、S2、S3的大小.三角形的边满足勾股定理. 【解析】 设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2 (1)S1=S2+S3; (2)S1=S2+S3.证明如下: 显然,S1=,S2=,S3= ∴S2+S3==S1, 即S1=S2+S3. (3)当所作的三个三角形相似时,S1=S2+S3.证明如下: ∵所作三个三角形相似 ∴ ∴=1 ∴S1=S2+S3; (4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,已知BC是⊙O的直径,AH⊥BC,垂足为D,点A为manfen5.com 满分网的中点,BF交AD于点E,且BE•EF=32,AD=6.
(1)求证:AE=BE;
(2)求DE的长;
(3)求BD的长.
查看答案
已知关于x的方程kx2-2(k+1)x+k-1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
查看答案
已知实数a满足a2+2a-8=0,求manfen5.com 满分网的值.
查看答案
我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩.已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:
分数段0-1920-3940-5960-7980-99100-119120-140
人  数376895563212
请根据以上信息解答下列问题:
(1)全市共有多少人参加本次数学竞赛决赛最低分和最高分在什么分数范围?
(2)经竞赛组委会评定,竞赛成绩在60分以上(含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;
(3)决赛成绩分数的中位数落在哪个分数段内?
(4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等.请你再写出两条此表提供的信息.
查看答案
已知等式(2A-7B)x+(3A-8B)=8x+10对切实数x都成立,求A、B的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.