满分5 >
初中数学试题 >
二次函数y=x2-4x图象的对称轴是( ) A.直线x=0 B.直线x=2 C....
二次函数y=x2-4x图象的对称轴是( )
A.直线x=0
B.直线x=2
C.直线x=4
D.直线x=-4
考点分析:
相关试题推荐
如图,已知直线y=
x+1与y轴交于点A,与x轴交于点D,抛物线y=
x
2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.
查看答案
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y
1、y
2(km),y
1、y
2与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为______km,a=______;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
查看答案
类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.
若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.
解决问题:
(1)计算:{3,1}+{1,2};{1,2}+{3,1};
(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置还是点B吗?在图1中画出四边形OABC.
②证明四边形OABC是平行四边形.
(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.
查看答案
在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于一点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若AD=2
,CF=
,求⊙O的面积.
查看答案
为了掌握中考模拟数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的初三班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 47.5~59.5 | 2 | 0.05 |
2 | 59.5~71.5 | 4 | 0.10 |
3 | 71.5~83.5 | a | 0.2 |
4 | 83.5~95.5 | 10 | 0.25 |
5 | 95.5~107.5 | b | c |
6 | 107.5~120 | 6 | 0.15 |
合计 | | 40 | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的a=______,b=______,c=______;
(2)已知全区有100个班级(平均每班40人),若108分及以上为优秀,请你预计用这份模拟卷考试优秀的人约为______个,若72分及以上为及格,则及格的人约为______个,及格的百分比约为______;
(3)补充完整频数分布直方图.
查看答案