满分5 > 初中数学试题 >

如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D. (1)求证...

如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网
(1)PQ切⊙O于T,则OT⊥PC,根据AC⊥PQ,则AC∥OT,要证明AT平分∠BAC,只要证明∠TAC=∠ATO就可以了. (2)过点O作OM⊥AC于M,则满足垂径定理,在直角△AOM中根据勾股定理就可以求出半径OA. (1)证明:连接OT; ∵PQ切⊙O于T, ∴OT⊥PQ, 又∵AC⊥PQ, ∴OT∥AC, ∴∠TAC=∠ATO; 又∵OT=OA, ∴∠ATO=∠OAT, ∴∠OAT=∠TAC, 即AT平分∠BAC. (2)【解析】 过点O作OM⊥AC于M, ∴AM=MD==1; 又∠OTC=∠ACT=∠OMC=90°, ∴四边形OTCM为矩形, ∴OM=TC=, ∴在Rt△AOM中, ; 即⊙O的半径为2.
复制答案
考点分析:
相关试题推荐
关于x的一元二次方程x2-x+p-1=0有两实数根x1,x2
(1)求p的取值范围;
(2)若[2+x1(1-x1)][2+x2(1-x2)]=9,求p的值.
查看答案
勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积进行了证明.著名数学家华罗庚提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.
请根据图1中直接三角形叙述勾股定理.
manfen5.com 满分网
以图1中的直角三角形为基础,可以构造出以a,b为底,以a+b为高的直角梯形(如图2).请你利用图2,验证勾股定理;
利用图2中的直角梯形,我们可以证明manfen5.com 满分网manfen5.com 满分网.其证明步骤如下:
∵BC=a+b,AD=______
查看答案
某市为了节约生活用水,计划制定每位居民统一用水量标准,然后根据标准,实行分段收费.此时,对居民上年度用水量频数分布直方图(图中分组含最低值,不含最高值),请根据图中信息解答下列问题:
(1)本次调查的居民人数为______人;
(2)本次调查的居民月均用水量的中位数落在频数分布直方图中的第______小组内(从左到右数);
(3)当地政府希望让85%左右居民的月均用水量低于制定的月用水量标准,根据上述调查结果,你认为月用水量标准(取整数)定位多少吨较为合适?
manfen5.com 满分网
查看答案
解方程:manfen5.com 满分网
查看答案
四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为β,那么sinβ=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.