如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.
(1)求证:BF=FD;
(2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由;
(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG=
DA,并说明理由.
考点分析:
相关试题推荐
某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?
查看答案
在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是
.
(1)求n的值;
(2)把这n个球中的两个标号为1,其余分别标号为2,3,…x=5,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率.
查看答案
某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?
查看答案
如图,甲船在港口P的北偏西60°方向,距港口80海里的A处,沿AP方向以12海里/时的速度驶向港口P,乙船从港口P出发,沿北偏东45°方向匀速驶离港口,现两船同时出发,2小时后甲船到达B处,乙船在甲船的正东方向的C处,求乙船的航行速度.(精确到0.1海里/时,参考数据
)
查看答案
先化简,再求值:
,其中x=
-1.
查看答案