满分5 > 初中数学试题 >

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分...

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

manfen5.com 满分网
(1)当t=2时,可分别计算出BP、BQ的长,再对△BPQ的形状进行判断; (2)∠B为60°特殊角,过Q作QE⊥AB,垂足为E,则BQ、BP、高EQ的长可用t表示,S与t的函数关系式也可求; (3)由题目线段的长度可证得△CRQ为等边三角形,进而得出四边形EPRQ是矩形,由△APR∽△PRQ,可得出∠QPR=60°,利用60°的特殊角列出一方程即可求得t的值. 【解析】 (1)△BPQ是等边三角形 当t=2时 AP=2×1=2,BQ=2×2=4 ∴BP=AB-AP=6-2=4 ∴BQ=BP 又∵∠B=60° ∴△BPQ是等边三角形; (2)过Q作QE⊥AB,垂足为E 由QB=2t,得QE=2t•sin60°=t 由AP=t,得PB=6-t ∴S△BPQ=×BP×QE=(6-t)×t=-t ∴S=-t; (3)∵QR∥BA ∴∠QRC=∠A=60°,∠RQC=∠B=60° ∴△QRC是等边三角形 ∴QR=RC=QC=6-2t ∵BE=BQ•cos60°=×2t=t ∴EP=AB-AP-BE=6-t-t=6-2t ∴EP∥QR,EP=QR ∴四边形EPRQ是平行四边形 ∴PR=EQ=t 又∵∠PEQ=90°, ∴∠APR=∠PRQ=90° ∵△APR∽△PRQ, ∴∠QPR=∠A=60° ∴tan60°= 即 解得t= ∴当t=时,△APR∽△PRQ.
复制答案
考点分析:
相关试题推荐
今年5月12日,四川汶川发生了里氏8.0级大地震,给当地人民造成了巨大的损失.“一方有难,八方支援”,我市锦华中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
 班级 (1)班(2)班  (3)班
 金额(元) 2000  
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
查看答案
如图:AB是⊙O的直径,AD是弦,∠DAB=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线;
(2)若AB=2manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分-100分;B级:75分-89分;C级:60分-74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角的度数;
(3)该班学生体育测试成绩的中位数落在哪个等级内;
(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?manfen5.com 满分网
查看答案
(1)如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,
求证:MB=MC.
manfen5.com 满分网
(2)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2).
①画出△OAB向下平移3个单位后的△O1A1B1
②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
(1)计算:|-manfen5.com 满分网|-manfen5.com 满分网+(π-4)-sin30°;
(2)化简:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.