满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,...

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式. (2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标. ②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值. (3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论: ①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标. ②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可. (本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可). 【解析】 (1)设OA所在直线的函数解析式为y=kx, ∵A(2,4), ∴2k=4, ∴k=2, ∴OA所在直线的函数解析式为y=2x. (2)①∵顶点M的横坐标为m,且在线段OA上移动, ∴y=2m(0≤m≤2). ∴顶点M的坐标为(m,2m). ∴抛物线函数解析式为y=(x-m)2+2m. ∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2). ∴点P的坐标是(2,m2-2m+4). ②∵PB=m2-2m+4=(m-1)2+3, 又∵0≤m≤2, ∴当m=1时,PB最短. (3)当线段PB最短时,此时抛物线的解析式为y=(x-1)2+2 即y=x2-2x+3. 假设在抛物线上存在点Q,使S△QMA=S△PMA. 设点Q的坐标为(x,x2-2x+3). ①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C, ∵PB=3,AB=4, ∴AP=1, ∴OC=1, ∴C点的坐标是(0,-1). ∵点P的坐标是(2,3), ∴直线PC的函数解析式为y=2x-1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x-1上. ∴x2-2x+3=2x-1. 解得x1=2,x2=2, 即点Q(2,3). ∴点Q与点P重合. ∴此时抛物线上存在点Q(2,3),使△QMA与△APM的面积相等. ②当点Q落在直线OA的上方时, 作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E, ∵AP=1, ∴EO=DA=1, ∴E、D的坐标分别是(0,1),(2,5), ∴直线DE函数解析式为y=2x+1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x+1上. ∴x2-2x+3=2x+1. 解得:x1=2+,x2=2-. 代入y=2x+1得:y1=5+2,y2=5-2. ∴此时抛物线上存在点Q1(2+,5+2),Q2(2-,5-2) 使△QMA与△PMA的面积相等. 综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2-,5-2),Q3(2,3),使△QMA与△PMA的面积相等.
复制答案
考点分析:
相关试题推荐
阅读理【解析】

对于任意正实数a,b,∵manfen5.com 满分网≥0,∴a-manfen5.com 满分网+b≥0,∴a+b≥2manfen5.com 满分网,只有点a=b时,等号成立.
结论:在a+b≥2manfen5.com 满分网(a,b均为正实数)中,若ab为定值p,则a+b≥manfen5.com 满分网,只有当a=b时,a+b有最小值2manfen5.com 满分网
根据上述内容,回答下列问题:
(1)若m>0,只有当m=______时,m+manfen5.com 满分网有最小值______
(2)思考验证:
①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥manfen5.com 满分网,并指出等号成立时的条件;
②探索应用:如图2,已知A(-3,0),B(0,-4)P为双曲线manfen5.com 满分网上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
manfen5.com 满分网
查看答案
“5•12”汶川大地震震惊全世界,面对人类特大灾害,在党中央国务院的领导下,全国人民万众一心,众志成城,抗震救灾.现在A,B两市各有赈灾物资500吨和300吨,急需运往汶川400吨,运往北川400吨,从A,B两市运往汶川,北川的耗油量如下表:
汶川(升/吨)北川(升/吨)
A市0.50.8
B市1.00.4
(1)若从A市运往汶川的赈灾物资为x吨,求完成以上运输所需总耗油量y(升)与x(吨)的函数关系式;
(2)请你设计一种最佳运输方案,使总耗油量最少,并求出完成以上方案至少需要多少升油.
查看答案
不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为manfen5.com 满分网
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;
(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?
查看答案
2008年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少人?均捐款多少元?
查看答案
manfen5.com 满分网一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.